mebubo commited on
Commit
8f33f3e
·
1 Parent(s): 14e5476

println profiling

Browse files
Files changed (2) hide show
  1. expand.py +2 -1
  2. expand_llm.py +15 -1
expand.py CHANGED
@@ -86,7 +86,8 @@ def expand(batch: Batch, expander: BatchExpander, completion_criterion: Callable
86
  completed_series: list[Series] = []
87
  current_batch = batch
88
  while len(current_batch.items) > 0:
89
- print(f"Expanding {len(current_batch.items)} series: {current_batch.items}")
 
90
  current_batch_items = []
91
  start_time = time.time()
92
  expanded = expander.expand(current_batch)
 
86
  completed_series: list[Series] = []
87
  current_batch = batch
88
  while len(current_batch.items) > 0:
89
+ # print(f"Expanding {len(current_batch.items)} series: {current_batch.items}")
90
+ print(f"Expanding {len(current_batch.items)} series")
91
  current_batch_items = []
92
  start_time = time.time()
93
  expanded = expander.expand(current_batch)
expand_llm.py CHANGED
@@ -2,19 +2,28 @@ import torch
2
  from expand import *
3
  from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
4
  from dataclasses import dataclass
 
5
 
6
  type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
7
 
8
  def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer) -> list[list[tuple[int, float]]]:
9
  input_ids = inputs["input_ids"]
10
  attention_mask = inputs["attention_mask"]
 
 
11
  with torch.no_grad():
12
  outputs = model(input_ids=input_ids, attention_mask=attention_mask)
 
 
13
  logits: torch.Tensor = outputs.logits[:, -1, :]
14
  log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
 
 
15
  result = []
 
16
  for probs in log_probs:
17
  result.append([(i, p.item()) for i, p in enumerate(probs)])
 
18
  return result
19
 
20
  def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
@@ -29,10 +38,15 @@ class LLMBatchExpander(BatchExpander):
29
  def expand(self, batch: Batch) -> BatchCandidates:
30
  inputs = prepare_inputs([s.get_all_tokens() for s in batch.items], self.tokenizer, self.model.device)
31
  next_tokens = find_next_tokens(self.model, inputs, self.tokenizer)
 
32
  results = []
 
33
  for s, next_tokens in zip(batch.items, next_tokens):
 
34
  expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens]
35
  results.append(TokenCandidates(series=s, expansions=expansions))
 
 
36
  return BatchCandidates(items=results)
37
 
38
  def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Expansion], bool]:
@@ -42,7 +56,7 @@ def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Exp
42
  return d
43
  token_str = tokenizer.decode([expansion.token])
44
  starts_with_space = token_str.startswith(" ")
45
- print(f"-----{token_str}-----, {starts_with_space=}")
46
  is_first_token = len(series.expansions) == 0
47
  if is_first_token and not starts_with_space:
48
  return True
 
2
  from expand import *
3
  from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
4
  from dataclasses import dataclass
5
+ import time
6
 
7
  type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
8
 
9
  def find_next_tokens(model: PreTrainedModel, inputs: BatchEncoding, tokenizer: Tokenizer) -> list[list[tuple[int, float]]]:
10
  input_ids = inputs["input_ids"]
11
  attention_mask = inputs["attention_mask"]
12
+ print("Running inference")
13
+ start_time = time.time()
14
  with torch.no_grad():
15
  outputs = model(input_ids=input_ids, attention_mask=attention_mask)
16
+ print(f"Inference done, took {time.time() - start_time} seconds")
17
+ start_time = time.time()
18
  logits: torch.Tensor = outputs.logits[:, -1, :]
19
  log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
20
+ print(f"Log probs done, took {time.time() - start_time} seconds")
21
+ start_time = time.time()
22
  result = []
23
+ print(f"Resulting tensor: {log_probs.shape}")
24
  for probs in log_probs:
25
  result.append([(i, p.item()) for i, p in enumerate(probs)])
26
+ print(f"Result done, took {time.time() - start_time} seconds")
27
  return result
28
 
29
  def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
 
38
  def expand(self, batch: Batch) -> BatchCandidates:
39
  inputs = prepare_inputs([s.get_all_tokens() for s in batch.items], self.tokenizer, self.model.device)
40
  next_tokens = find_next_tokens(self.model, inputs, self.tokenizer)
41
+ start_time = time.time()
42
  results = []
43
+ print(f"Batch size: {len(batch.items)}, next tokens size: {len(next_tokens)}")
44
  for s, next_tokens in zip(batch.items, next_tokens):
45
+ print(f"Series {s.id}, {len(next_tokens)=}")
46
  expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens]
47
  results.append(TokenCandidates(series=s, expansions=expansions))
48
+ print()
49
+ print(f"Token candidates done, took {time.time() - start_time} seconds")
50
  return BatchCandidates(items=results)
51
 
52
  def create_stopping_criterion_llm(tokenizer: Tokenizer) -> Callable[[Series, Expansion], bool]:
 
56
  return d
57
  token_str = tokenizer.decode([expansion.token])
58
  starts_with_space = token_str.startswith(" ")
59
+ # print(f"-----{token_str}-----, {starts_with_space=}")
60
  is_first_token = len(series.expansions) == 0
61
  if is_first_token and not starts_with_space:
62
  return True