refactor: separate text processing logic into a new module for better organization
Browse files- app.py +1 -29
- text_processing.py +30 -0
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
#%%
|
2 |
-
from
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from pprint import pprint
|
@@ -73,34 +73,6 @@ for word, avg_logprob in words:
|
|
73 |
|
74 |
# %%
|
75 |
|
76 |
-
@dataclass
|
77 |
-
class Word:
|
78 |
-
tokens: list[int]
|
79 |
-
text: str
|
80 |
-
logprob: float
|
81 |
-
first_token_index: int
|
82 |
-
|
83 |
-
def split_into_words(tokens, log_probs) -> list[Word]:
|
84 |
-
words = []
|
85 |
-
current_word = []
|
86 |
-
current_log_probs = []
|
87 |
-
current_word_first_token_index = 0
|
88 |
-
|
89 |
-
for i, (token, logprob) in enumerate(zip(tokens, log_probs)):
|
90 |
-
if not token.startswith(chr(9601)) and token.isalpha():
|
91 |
-
current_word.append(token)
|
92 |
-
current_log_probs.append(logprob)
|
93 |
-
else:
|
94 |
-
if current_word:
|
95 |
-
words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
|
96 |
-
current_word = [token]
|
97 |
-
current_log_probs = [logprob]
|
98 |
-
current_word_first_token_index = i
|
99 |
-
|
100 |
-
if current_word:
|
101 |
-
words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
|
102 |
-
|
103 |
-
return words
|
104 |
|
105 |
words = split_into_words(tokens[1:], token_log_probs)
|
106 |
|
|
|
1 |
#%%
|
2 |
+
from text_processing import split_into_words, Word
|
3 |
import torch
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
5 |
from pprint import pprint
|
|
|
73 |
|
74 |
# %%
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
words = split_into_words(tokens[1:], token_log_probs)
|
78 |
|
text_processing.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
@dataclass
|
4 |
+
class Word:
|
5 |
+
tokens: list[int]
|
6 |
+
text: str
|
7 |
+
logprob: float
|
8 |
+
first_token_index: int
|
9 |
+
|
10 |
+
def split_into_words(tokens, log_probs) -> list[Word]:
|
11 |
+
words = []
|
12 |
+
current_word = []
|
13 |
+
current_log_probs = []
|
14 |
+
current_word_first_token_index = 0
|
15 |
+
|
16 |
+
for i, (token, logprob) in enumerate(zip(tokens, log_probs)):
|
17 |
+
if not token.startswith(chr(9601)) and token.isalpha():
|
18 |
+
current_word.append(token)
|
19 |
+
current_log_probs.append(logprob)
|
20 |
+
else:
|
21 |
+
if current_word:
|
22 |
+
words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
|
23 |
+
current_word = [token]
|
24 |
+
current_log_probs = [logprob]
|
25 |
+
current_word_first_token_index = i
|
26 |
+
|
27 |
+
if current_word:
|
28 |
+
words.append(Word(current_word, "".join(current_word), sum(current_log_probs), current_word_first_token_index))
|
29 |
+
|
30 |
+
return words
|