gpted / completions.py
mebubo's picture
Snapshot
0a795e1
raw
history blame
6.48 kB
#%%
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
from transformers.generation.utils import GenerateOutput
from models import ApiWord, Word
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast
def starts_with_space(token: str) -> bool:
return token.startswith(chr(9601)) or token.startswith(chr(288))
def is_newline(token: str) -> bool:
return len(token) == 1 and ord(token[0]) == 266
def split_into_words(token_probs: list[tuple[int, float]], tokenizer: Tokenizer) -> list[Word]:
words: list[Word] = []
current_word: list[int] = []
current_log_probs: list[float] = []
current_word_first_token_index: int = 0
all_tokens: list[int] = [token_id for token_id, _ in token_probs]
def append_word(word):
if word:
words.append(Word(word,
tokenizer.decode(word),
sum(current_log_probs),
all_tokens[:current_word_first_token_index]))
for i, (token_id, logprob) in enumerate(token_probs):
token: str = tokenizer.convert_ids_to_tokens([token_id])[0]
token_str = tokenizer.decode([token_id])
print(f"-- {token_id=} {token=} {token_str=} {token_str.isalpha()=} {token_str.isspace()=}")
if (not starts_with_space(token) and token_str.isalpha()):
current_word.append(token_id)
current_log_probs.append(logprob)
else:
append_word(current_word)
current_word = [token_id]
current_log_probs = [logprob]
current_word_first_token_index = i
if is_newline(token):
append_word(current_word)
current_word = []
current_log_probs = []
current_word_first_token_index = i
append_word(current_word)
return words
def load_model_and_tokenizer(model_name: str, device: torch.device) -> tuple[PreTrainedModel, Tokenizer]:
tokenizer: Tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(model_name)
model.to(device)
return model, tokenizer
def tokenize(input_text: str, tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
return tokenizer(input_text, return_tensors="pt").to(device)
def calculate_log_probabilities(model: PreTrainedModel, tokenizer: Tokenizer, inputs: BatchEncoding) -> list[tuple[int, float]]:
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
# B x T x V
logits: torch.Tensor = outputs.logits[:, :-1, :]
# B x T x V
log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
# T - 1
token_log_probs: torch.Tensor = log_probs[0, range(log_probs.shape[1]), input_ids[0][1:]]
# T - 1
tokens: torch.Tensor = input_ids[0][1:]
return list(zip(tokens.tolist(), token_log_probs.tolist()))
def prepare_inputs(contexts: list[list[int]], tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
texts = [tokenizer.decode(context, skip_special_tokens=True) for context in contexts]
return tokenizer(texts, return_tensors="pt", padding=True).to(device)
def generate_outputs(model: PreTrainedModel, inputs: BatchEncoding, num_samples: int = 5) -> GenerateOutput | torch.LongTensor:
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=4,
num_return_sequences=num_samples,
temperature=1.0,
top_k=50,
top_p=0.95,
do_sample=True
# num_beams=num_samples
)
return outputs
def extract_replacements(outputs: GenerateOutput | torch.LongTensor, tokenizer: Tokenizer, num_inputs: int, input_len: int, num_samples: int = 5) -> list[list[str]]:
all_new_words = []
for i in range(num_inputs):
replacements = set()
for j in range(num_samples):
generated_ids = outputs[i * num_samples + j][input_len:]
new_word = tokenizer.convert_ids_to_tokens(generated_ids.tolist())[0]
if starts_with_space(new_word):
replacements.add(" " +new_word[1:])
all_new_words.append(sorted(list(replacements)))
return all_new_words
#%%
def load_model() -> tuple[PreTrainedModel, Tokenizer, torch.device]:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model_name = "mistralai/Mistral-7B-v0.1"
model_name = "unsloth/Llama-3.2-1B"
model, tokenizer = load_model_and_tokenizer(model_name, device)
return model, tokenizer, device
def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, device: torch.device) -> list[ApiWord]:
#%%
inputs: BatchEncoding = tokenize(input_text, tokenizer, device)
#%%
token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, inputs)
#%%
words = split_into_words(token_probs, tokenizer)
log_prob_threshold = -5.0
low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]
#%%
contexts = [word.context for _, word in low_prob_words]
inputs = prepare_inputs(contexts, tokenizer, device)
input_ids = inputs["input_ids"]
#%%
num_samples = 10
start_time = time.time()
outputs = generate_outputs(model, inputs, num_samples)
end_time = time.time()
print(f"Total time taken for replacements: {end_time - start_time:.4f} seconds")
#%%
replacements = extract_replacements(outputs, tokenizer, input_ids.shape[0], input_ids.shape[1], num_samples)
low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }
result = []
for i, word in enumerate(words):
if i in low_prob_words_with_replacements:
result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=low_prob_words_with_replacements[i][1]))
else:
result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=[]))
return result