|
from expand import * |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding |
|
from dataclasses import dataclass |
|
from completions import prepare_inputs, find_next_tokens |
|
|
|
type Tokenizer = PreTrainedTokenizer | PreTrainedTokenizerFast |
|
|
|
@dataclass |
|
class ExpanderOneBatchLLM: |
|
model: PreTrainedModel |
|
tokenizer: Tokenizer |
|
|
|
def expand(self, batch: Batch) -> ExpansionOneResultBatch: |
|
inputs = prepare_inputs([s.get_all_tokens() for s in batch.items], self.tokenizer, self.model.device) |
|
next_tokens = find_next_tokens(self.model, inputs, self.tokenizer) |
|
results = [] |
|
for s, next_tokens in zip(batch.items, next_tokens): |
|
expansions = [Expansion(token=token, cost=cost) for token, cost in next_tokens if cost + s.get_remaining_budget() >= 0] |
|
results.append(ExpansionOneResult(series=s, expansions=expansions)) |
|
return ExpansionOneResultBatch(items=results) |
|
|