gpted / app.py
mebubo's picture
style: Regroup import statements at the top of app.py
19904de
raw
history blame
2.88 kB
from text_processing import split_into_words, Word
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer
from pprint import pprint
def load_model_and_tokenizer(model_name):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
return model, tokenizer, device
def process_input_text(input_text, tokenizer, device):
inputs = tokenizer(input_text, return_tensors="pt").to(device)
input_ids = inputs["input_ids"]
return inputs, input_ids
def calculate_log_probabilities(model, tokenizer, inputs, input_ids):
with torch.no_grad():
outputs = model(**inputs, labels=input_ids)
logits = outputs.logits[0, :-1, :]
log_probs = torch.log_softmax(logits, dim=-1)
token_log_probs = log_probs[range(log_probs.shape[0]), input_ids[0][1:]]
tokens = tokenizer.convert_ids_to_tokens(input_ids[0])
return list(zip(tokens[1:], token_log_probs.tolist()))
def generate_replacements(model: PreTrainedModel, tokenizer: PreTrainedTokenizer, prefix: str, device: torch.device, num_samples: int = 5) -> list[str]:
input_context = tokenizer(prefix, return_tensors="pt").to(device)
input_ids = input_context["input_ids"]
with torch.no_grad():
outputs = model.generate(
input_ids=input_ids,
max_length=input_ids.shape[-1] + 5,
num_return_sequences=num_samples,
temperature=1.0,
top_k=50,
top_p=0.95,
do_sample=True
)
new_words = []
for i in range(num_samples):
generated_ids = outputs[i][input_ids.shape[-1]:]
new_word = tokenizer.decode(generated_ids, skip_special_tokens=True).split()[0]
new_words.append(new_word)
return new_words
#%%
model_name = "mistralai/Mistral-7B-v0.1"
model, tokenizer, device = load_model_and_tokenizer(model_name)
input_text = "He asked me to prostrate myself before the king, but I rifused."
inputs, input_ids = process_input_text(input_text, tokenizer, device)
result = calculate_log_probabilities(model, tokenizer, inputs, input_ids)
words = split_into_words([token for token, _ in result], [logprob for _, logprob in result])
log_prob_threshold = -5.0
low_prob_words = [word for word in words if word.logprob < log_prob_threshold]
#%%
for word in low_prob_words:
prefix_index = word.first_token_index
prefix_tokens = [token for token, _ in result][:prefix_index + 1]
prefix = tokenizer.convert_tokens_to_string(prefix_tokens)
replacements = generate_replacements(model, tokenizer, prefix, device)
print(f"Original word: {word.text}, Log Probability: {word.logprob:.4f}")
print(f"Proposed replacements: {replacements}")
print()