File size: 5,072 Bytes
a9cc853
9652314
91f2f92
426b33e
b174bd4
91f2f92
308bca9
9652314
308bca9
 
9652314
87af3eb
 
 
0a795e1
 
 
b174bd4
9652314
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2fb63bf
9652314
 
 
 
 
 
 
 
 
 
b174bd4
 
 
426b33e
b174bd4
 
426b33e
8e36e52
426b33e
8e36e52
d3ef10a
 
8e36e52
d3ef10a
da342d0
 
8e36e52
da342d0
426b33e
 
 
 
 
230a441
c980c58
 
230a441
8e36e52
ada166c
426b33e
83ec4f2
 
426b33e
83ec4f2
 
 
 
8e36e52
83ec4f2
 
426b33e
83ec4f2
91f2f92
83ec4f2
 
c4d5641
b174bd4
c4d5641
da342d0
0235f77
308bca9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3ef10a
c4d5641
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
#%%
from dataclasses import dataclass
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast, BatchEncoding
from transformers.generation.utils import GenerateOutput

from models import ApiWord, Word, Replacement
from combine import combine
from expand import *
from expand_llm import *

def starts_with_space(token: str) -> bool:
    return token.startswith(chr(9601)) or token.startswith(chr(288))

def is_newline(token: str) -> bool:
    return len(token) == 1 and ord(token[0]) == 266

def split_into_words(token_probs: list[tuple[int, float]], tokenizer: Tokenizer) -> list[Word]:

    @dataclass
    class Tok:
        index: int
        ids: list[int]
        str: str
        logprob: float

    def is_beginning_of_word(s: str) -> bool:
        return (s[0] == " " and s[1:].isalpha()) or s.isalpha()

    def is_continuation_of_word(s: str) -> bool:
        return s.isalpha()

    def merge_tokens(a: Tok, b: Tok) -> Tok | None:
        if is_beginning_of_word(a.str) and is_continuation_of_word(b.str):
            return Tok(a.index, a.ids + b.ids, a.str + b.str, a.logprob + b.logprob)
        return None

    converted = [Tok(i, [token_id], tokenizer.decode([token_id]), logprob)
                 for i, (token_id, logprob) in enumerate(token_probs)]

    combined = combine(converted, merge_tokens)

    ts = [t[0] for t in token_probs]

    words = [Word(tok.ids, tok.str, tok.logprob, ts[:tok.index]) for tok in combined]

    return words

def load_model_and_tokenizer(model_name: str, device: torch.device) -> tuple[PreTrainedModel, Tokenizer]:
    tokenizer: Tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
    tokenizer.pad_token = tokenizer.eos_token
    model: PreTrainedModel = AutoModelForCausalLM.from_pretrained(model_name)
    model.to(device)
    return model, tokenizer

def tokenize(input_text: str, tokenizer: Tokenizer, device: torch.device) -> BatchEncoding:
    return tokenizer(input_text, return_tensors="pt").to(device)

def calculate_log_probabilities(model: PreTrainedModel, tokenizer: Tokenizer, inputs: BatchEncoding) -> list[tuple[int, float]]:
    input_ids = inputs["input_ids"]
    attention_mask = inputs["attention_mask"]
    with torch.no_grad():
        outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=input_ids)
    # B x T x V
    logits: torch.Tensor = outputs.logits[:, :-1, :]
    # B x T x V
    log_probs: torch.Tensor = torch.log_softmax(logits, dim=-1)
    # T - 1
    tokens: torch.Tensor = input_ids[0][1:]
    # T - 1
    token_log_probs: torch.Tensor = log_probs[0, range(log_probs.shape[1]), tokens]
    return list(zip(tokens.tolist(), token_log_probs.tolist()))

#%%

def load_model() -> tuple[PreTrainedModel, Tokenizer, torch.device]:
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # model_name = "mistralai/Mistral-7B-v0.1"
    model_name = "unsloth/Llama-3.2-1B"
    model, tokenizer = load_model_and_tokenizer(model_name, device)
    return model, tokenizer, device

def check_text(input_text: str, model: PreTrainedModel, tokenizer: Tokenizer, device: torch.device) -> list[ApiWord]:
    inputs: BatchEncoding = tokenize(input_text, tokenizer, device)

    token_probs: list[tuple[int, float]] = calculate_log_probabilities(model, tokenizer, inputs)

    words = split_into_words(token_probs, tokenizer)
    log_prob_threshold = -5.0
    low_prob_words = [(i, word) for i, word in enumerate(words) if word.logprob < log_prob_threshold]

    contexts = [word.context for _, word in low_prob_words]

    expander = LLMBatchExpander(model, tokenizer, threshold=log_prob_threshold)

    #%%
    series = []
    for i, x in enumerate(contexts):
        series.append(Series(id=i, tokens=x, budget=5.0))

    #%%
    batch = Batch(items=series)

    #%%
    stopping_criterion = create_stopping_criterion_llm(tokenizer)

    #%%
    expanded = expand(batch, expander, stopping_criterion)

    # group by series id
    expanded_by_id: dict[int, list[list[Expansion]]] = defaultdict(list)
    for result in expanded.items:
        expanded_by_id[result.series.id].extend(result.expansions)

    replacements: list[list[Replacement]] = []
    for i, _ in enumerate(contexts):
        r = []
        expansions = expanded_by_id[i]
        for exp in expansions:
            tokens = [e.token for e in exp]
            s = tokenizer.decode(tokens)
            logprob = sum(e.cost for e in exp)
            r.append(Replacement(text=s, logprob=logprob))
        replacements.append(r)

    low_prob_words_with_replacements = { i: (w, r) for (i, w), r in zip(low_prob_words, replacements) }

    result = []
    for i, word in enumerate(words):
        if i in low_prob_words_with_replacements:
            result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=low_prob_words_with_replacements[i][1]))
        else:
            result.append(ApiWord(text=word.text, logprob=word.logprob, replacements=[]))
    return result