File size: 28,768 Bytes
2ba4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
import math
import torch
import xformers
import xformers.ops
import torch.nn as nn
from einops import rearrange
import torch.nn.functional as F
from rotary_embedding_torch import RotaryEmbedding
from fairscale.nn.checkpoint import checkpoint_wrapper

from .util import *
# from .mha_flash import FlashAttentionBlock
from utils.registry_class import MODEL


USE_TEMPORAL_TRANSFORMER = True



class PreNormattention(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.fn(self.norm(x), **kwargs) + x

class PreNormattention_qkv(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, q, k, v, **kwargs):
        return self.fn(self.norm(q), self.norm(k), self.norm(v), **kwargs) + q

class Attention(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, x):
        b, n, _, h = *x.shape, self.heads
        qkv = self.to_qkv(x).chunk(3, dim = -1)
        q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), qkv)

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        attn = self.attend(dots)

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)


class Attention_qkv(nn.Module):
    def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.):
        super().__init__()
        inner_dim = dim_head *  heads
        project_out = not (heads == 1 and dim_head == dim)

        self.heads = heads
        self.scale = dim_head ** -0.5

        self.attend = nn.Softmax(dim = -1)
        self.to_q = nn.Linear(dim, inner_dim, bias = False)
        self.to_k = nn.Linear(dim, inner_dim, bias = False)
        self.to_v = nn.Linear(dim, inner_dim, bias = False)

        self.to_out = nn.Sequential(
            nn.Linear(inner_dim, dim),
            nn.Dropout(dropout)
        ) if project_out else nn.Identity()

    def forward(self, q, k, v):
        b, n, _, h = *q.shape, self.heads
        bk = k.shape[0]
        
        q = self.to_q(q)
        k = self.to_k(k)
        v = self.to_v(v)
        q = rearrange(q, 'b n (h d) -> b h n d', h = h)
        k = rearrange(k, 'b n (h d) -> b h n d', b=bk, h = h)
        v = rearrange(v, 'b n (h d) -> b h n d', b=bk, h = h)

        dots = einsum('b h i d, b h j d -> b h i j', q, k) * self.scale

        attn = self.attend(dots)    

        out = einsum('b h i j, b h j d -> b h i d', attn, v)
        out = rearrange(out, 'b h n d -> b n (h d)')
        return self.to_out(out)

class PostNormattention(nn.Module):
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = nn.LayerNorm(dim)
        self.fn = fn
    def forward(self, x, **kwargs):
        return self.norm(self.fn(x, **kwargs) + x)
    



class Transformer_v2(nn.Module):
    def __init__(self, heads=8, dim=2048, dim_head_k=256, dim_head_v=256, dropout_atte = 0.05, mlp_dim=2048, dropout_ffn = 0.05, depth=1):
        super().__init__()
        self.layers = nn.ModuleList([])
        self.depth = depth
        for _ in range(depth):
            self.layers.append(nn.ModuleList([  
                PreNormattention(dim, Attention(dim, heads = heads, dim_head = dim_head_k, dropout = dropout_atte)),
                FeedForward(dim, mlp_dim, dropout = dropout_ffn),
            ]))
    def forward(self, x):
        for attn, ff in self.layers[:1]:
            x = attn(x)
            x = ff(x) + x
        if self.depth > 1:
            for attn, ff in self.layers[1:]:
                x = attn(x)
                x = ff(x) + x
        return x


class DropPath(nn.Module):
    r"""DropPath but without rescaling and supports optional all-zero and/or all-keep.
    """
    def __init__(self, p):
        super(DropPath, self).__init__()
        self.p = p
    
    def forward(self, *args, zero=None, keep=None):
        if not self.training:
            return args[0] if len(args) == 1 else args
        
        # params
        x = args[0]
        b = x.size(0)
        n = (torch.rand(b) < self.p).sum()

        # non-zero and non-keep mask
        mask = x.new_ones(b, dtype=torch.bool)
        if keep is not None:
            mask[keep] = False
        if zero is not None:
            mask[zero] = False
        
        # drop-path index
        index = torch.where(mask)[0]
        index = index[torch.randperm(len(index))[:n]]
        if zero is not None:
            index = torch.cat([index, torch.where(zero)[0]], dim=0)
        
        # drop-path multiplier
        multiplier = x.new_ones(b)
        multiplier[index] = 0.0
        output = tuple(u * self.broadcast(multiplier, u) for u in args)
        return output[0] if len(args) == 1 else output
    
    def broadcast(self, src, dst):
        assert src.size(0) == dst.size(0)
        shape = (dst.size(0), ) + (1, ) * (dst.ndim - 1)
        return src.view(shape)




@MODEL.register_class()
class UNetSD_UniAnimate(nn.Module):

    def __init__(self,
                 config=None,
                 in_dim=4,
                 dim=512,
                 y_dim=512,
                 context_dim=1024,
                 hist_dim = 156,
                 concat_dim = 8,
                 out_dim=6,
                 dim_mult=[1, 2, 3, 4],
                 num_heads=None,
                 head_dim=64,
                 num_res_blocks=3,
                 attn_scales=[1 / 2, 1 / 4, 1 / 8],
                 use_scale_shift_norm=True,
                 dropout=0.1,
                 temporal_attn_times=1,
                 temporal_attention = True,
                 use_checkpoint=False,
                 use_image_dataset=False,
                 use_fps_condition= False,
                 use_sim_mask = False,
                 misc_dropout = 0.5,
                 training=True,
                 inpainting=True,
                 p_all_zero=0.1,
                 p_all_keep=0.1,
                 zero_y = None,
                 black_image_feature = None,
                 adapter_transformer_layers = 1,
                 num_tokens=4,
                 **kwargs
                 ):
        embed_dim = dim * 4
        num_heads=num_heads if num_heads else dim//32
        super(UNetSD_UniAnimate, self).__init__()
        self.zero_y = zero_y
        self.black_image_feature = black_image_feature
        self.cfg = config
        self.in_dim = in_dim
        self.dim = dim
        self.y_dim = y_dim
        self.context_dim = context_dim
        self.num_tokens = num_tokens
        self.hist_dim = hist_dim
        self.concat_dim = concat_dim
        self.embed_dim = embed_dim
        self.out_dim = out_dim
        self.dim_mult = dim_mult
        
        self.num_heads = num_heads
        
        self.head_dim = head_dim
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.use_scale_shift_norm = use_scale_shift_norm
        self.temporal_attn_times = temporal_attn_times
        self.temporal_attention = temporal_attention
        self.use_checkpoint = use_checkpoint
        self.use_image_dataset = use_image_dataset
        self.use_fps_condition = use_fps_condition
        self.use_sim_mask = use_sim_mask
        self.training=training
        self.inpainting = inpainting
        self.video_compositions = self.cfg.video_compositions
        self.misc_dropout = misc_dropout
        self.p_all_zero = p_all_zero
        self.p_all_keep = p_all_keep

        use_linear_in_temporal = False
        transformer_depth = 1
        disabled_sa = False
        # params
        enc_dims = [dim * u for u in [1] + dim_mult]
        dec_dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        shortcut_dims = []
        scale = 1.0
        self.resolution = config.resolution
        

        # embeddings
        self.time_embed = nn.Sequential(
            nn.Linear(dim, embed_dim),
            nn.SiLU(),
            nn.Linear(embed_dim, embed_dim))
        if 'image' in self.video_compositions:
            self.pre_image_condition = nn.Sequential(
                nn.Linear(self.context_dim, self.context_dim),
                nn.SiLU(),
                nn.Linear(self.context_dim, self.context_dim*self.num_tokens))

        
        if 'local_image' in self.video_compositions:
            self.local_image_embedding = nn.Sequential(
                    nn.Conv2d(3, concat_dim * 4, 3, padding=1),
                    nn.SiLU(),
                    nn.AdaptiveAvgPool2d((self.resolution[1]//2, self.resolution[0]//2)),
                    nn.Conv2d(concat_dim * 4, concat_dim * 4, 3, stride=2, padding=1),
                    nn.SiLU(),
                    nn.Conv2d(concat_dim * 4, concat_dim, 3, stride=2, padding=1))
            self.local_image_embedding_after = Transformer_v2(heads=2, dim=concat_dim, dim_head_k=concat_dim, dim_head_v=concat_dim, dropout_atte = 0.05, mlp_dim=concat_dim, dropout_ffn = 0.05, depth=adapter_transformer_layers)
        
        if 'dwpose' in self.video_compositions:
            self.dwpose_embedding = nn.Sequential(
                    nn.Conv2d(3, concat_dim * 4, 3, padding=1),
                    nn.SiLU(),
                    nn.AdaptiveAvgPool2d((self.resolution[1]//2, self.resolution[0]//2)),
                    nn.Conv2d(concat_dim * 4, concat_dim * 4, 3, stride=2, padding=1),
                    nn.SiLU(),
                    nn.Conv2d(concat_dim * 4, concat_dim, 3, stride=2, padding=1))
            self.dwpose_embedding_after = Transformer_v2(heads=2, dim=concat_dim, dim_head_k=concat_dim, dim_head_v=concat_dim, dropout_atte = 0.05, mlp_dim=concat_dim, dropout_ffn = 0.05, depth=adapter_transformer_layers)
        
        if 'randomref_pose' in self.video_compositions:
            randomref_dim = 4
            self.randomref_pose2_embedding = nn.Sequential(
                    nn.Conv2d(3, concat_dim * 4, 3, padding=1),
                    nn.SiLU(),
                    nn.AdaptiveAvgPool2d((self.resolution[1]//2, self.resolution[0]//2)),
                    nn.Conv2d(concat_dim * 4, concat_dim * 4, 3, stride=2, padding=1),
                    nn.SiLU(),
                    nn.Conv2d(concat_dim * 4, concat_dim+randomref_dim, 3, stride=2, padding=1))
            self.randomref_pose2_embedding_after = Transformer_v2(heads=2, dim=concat_dim+randomref_dim, dim_head_k=concat_dim+randomref_dim, dim_head_v=concat_dim+randomref_dim, dropout_atte = 0.05, mlp_dim=concat_dim+randomref_dim, dropout_ffn = 0.05, depth=adapter_transformer_layers)
        
        if 'randomref' in self.video_compositions:
            randomref_dim = 4
            self.randomref_embedding2 = nn.Sequential(
                    nn.Conv2d(randomref_dim, concat_dim * 4, 3, padding=1),
                    nn.SiLU(),
                    nn.Conv2d(concat_dim * 4, concat_dim * 4, 3, stride=1, padding=1),
                    nn.SiLU(),
                    nn.Conv2d(concat_dim * 4, concat_dim+randomref_dim, 3, stride=1, padding=1))
            self.randomref_embedding_after2 = Transformer_v2(heads=2, dim=concat_dim+randomref_dim, dim_head_k=concat_dim+randomref_dim, dim_head_v=concat_dim+randomref_dim, dropout_atte = 0.05, mlp_dim=concat_dim+randomref_dim, dropout_ffn = 0.05, depth=adapter_transformer_layers)
        
        ### Condition Dropout
        self.misc_dropout = DropPath(misc_dropout)

        
        if temporal_attention and not USE_TEMPORAL_TRANSFORMER:
            self.rotary_emb = RotaryEmbedding(min(32, head_dim))
            self.time_rel_pos_bias = RelativePositionBias(heads = num_heads, max_distance = 32) # realistically will not be able to generate that many frames of video... yet

        if self.use_fps_condition:
            self.fps_embedding = nn.Sequential(
                nn.Linear(dim, embed_dim),
                nn.SiLU(),
                nn.Linear(embed_dim, embed_dim))
            nn.init.zeros_(self.fps_embedding[-1].weight)
            nn.init.zeros_(self.fps_embedding[-1].bias)

        # encoder
        self.input_blocks = nn.ModuleList()
        self.pre_image = nn.Sequential()
        init_block = nn.ModuleList([nn.Conv2d(self.in_dim + concat_dim, dim, 3, padding=1)])

        #### need an initial temporal attention?
        if temporal_attention:
            if USE_TEMPORAL_TRANSFORMER:
                init_block.append(TemporalTransformer(dim, num_heads, head_dim, depth=transformer_depth, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal, multiply_zero=use_image_dataset))
            else:
                init_block.append(TemporalAttentionMultiBlock(dim, num_heads, head_dim, rotary_emb=self.rotary_emb, temporal_attn_times=temporal_attn_times, use_image_dataset=use_image_dataset))
        
        self.input_blocks.append(init_block)
        shortcut_dims.append(dim)
        for i, (in_dim, out_dim) in enumerate(zip(enc_dims[:-1], enc_dims[1:])):
            for j in range(num_res_blocks):
                
                block = nn.ModuleList([ResBlock(in_dim, embed_dim, dropout, out_channels=out_dim, use_scale_shift_norm=False, use_image_dataset=use_image_dataset,)])
                
                if scale in attn_scales:
                    block.append(
                            SpatialTransformer(
                                out_dim, out_dim // head_dim, head_dim, depth=1, context_dim=self.context_dim,
                                disable_self_attn=False, use_linear=True
                            )
                    )
                    if self.temporal_attention:
                        if USE_TEMPORAL_TRANSFORMER:
                            block.append(TemporalTransformer(out_dim, out_dim // head_dim, head_dim, depth=transformer_depth, context_dim=context_dim,
                                disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal, multiply_zero=use_image_dataset))
                        else:
                            block.append(TemporalAttentionMultiBlock(out_dim, num_heads, head_dim, rotary_emb = self.rotary_emb, use_image_dataset=use_image_dataset, use_sim_mask=use_sim_mask, temporal_attn_times=temporal_attn_times))
                in_dim = out_dim
                self.input_blocks.append(block)
                shortcut_dims.append(out_dim)

                # downsample
                if i != len(dim_mult) - 1 and j == num_res_blocks - 1:
                    downsample = Downsample(
                        out_dim, True, dims=2, out_channels=out_dim
                    )
                    shortcut_dims.append(out_dim)
                    scale /= 2.0
                    self.input_blocks.append(downsample)
        
        # middle
        self.middle_block = nn.ModuleList([
            ResBlock(out_dim, embed_dim, dropout, use_scale_shift_norm=False, use_image_dataset=use_image_dataset,),
            SpatialTransformer(
                out_dim, out_dim // head_dim, head_dim, depth=1, context_dim=self.context_dim,
                disable_self_attn=False, use_linear=True
            )])        
        
        if self.temporal_attention:
            if USE_TEMPORAL_TRANSFORMER:
                self.middle_block.append(
                 TemporalTransformer( 
                            out_dim, out_dim // head_dim, head_dim, depth=transformer_depth, context_dim=context_dim,
                            disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal,
                            multiply_zero=use_image_dataset,
                        )
                )
            else:
                self.middle_block.append(TemporalAttentionMultiBlock(out_dim, num_heads, head_dim, rotary_emb =  self.rotary_emb, use_image_dataset=use_image_dataset, use_sim_mask=use_sim_mask, temporal_attn_times=temporal_attn_times))        

        self.middle_block.append(ResBlock(out_dim, embed_dim, dropout, use_scale_shift_norm=False))
        

        # decoder
        self.output_blocks = nn.ModuleList()
        for i, (in_dim, out_dim) in enumerate(zip(dec_dims[:-1], dec_dims[1:])):
            for j in range(num_res_blocks + 1):
                
                block = nn.ModuleList([ResBlock(in_dim + shortcut_dims.pop(), embed_dim, dropout, out_dim, use_scale_shift_norm=False, use_image_dataset=use_image_dataset, )])
                if scale in attn_scales:
                    block.append(
                        SpatialTransformer(
                            out_dim, out_dim // head_dim, head_dim, depth=1, context_dim=1024,
                            disable_self_attn=False, use_linear=True
                        )
                    )
                    if self.temporal_attention:
                        if USE_TEMPORAL_TRANSFORMER:
                            block.append(
                                TemporalTransformer(
                                    out_dim, out_dim // head_dim, head_dim, depth=transformer_depth, context_dim=context_dim,
                                    disable_self_attn=disabled_sa, use_linear=use_linear_in_temporal, multiply_zero=use_image_dataset
                                    )
                            )
                        else:
                            block.append(TemporalAttentionMultiBlock(out_dim, num_heads, head_dim, rotary_emb =self.rotary_emb, use_image_dataset=use_image_dataset, use_sim_mask=use_sim_mask, temporal_attn_times=temporal_attn_times))
                in_dim = out_dim

                # upsample
                if i != len(dim_mult) - 1 and j == num_res_blocks:
                    upsample = Upsample(out_dim, True, dims=2.0, out_channels=out_dim)
                    scale *= 2.0
                    block.append(upsample)
                self.output_blocks.append(block)

        # head
        self.out = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Conv2d(out_dim, self.out_dim, 3, padding=1))
        
        # zero out the last layer params
        nn.init.zeros_(self.out[-1].weight)
    
    def forward(self, 
        x,
        t,
        y = None,
        depth = None,
        image = None,
        motion = None,
        local_image = None,
        single_sketch = None,
        masked = None,
        canny = None,
        sketch = None,
        dwpose = None,
        randomref = None,
        histogram = None,
        fps = None,
        video_mask = None,
        focus_present_mask = None,
        prob_focus_present = 0.,  # probability at which a given batch sample will focus on the present (0. is all off, 1. is completely arrested attention across time)
        mask_last_frame_num = 0  # mask last frame num
        ):

        
        assert self.inpainting or masked is None, 'inpainting is not supported'

        batch, c, f, h, w= x.shape
        frames = f
        device = x.device
        self.batch = batch

        #### image and video joint training, if mask_last_frame_num is set, prob_focus_present will be ignored
        if mask_last_frame_num > 0:
            focus_present_mask = None
            video_mask[-mask_last_frame_num:] = False
        else:
            focus_present_mask = default(focus_present_mask, lambda: prob_mask_like((batch,), prob_focus_present, device = device))

        if self.temporal_attention and not USE_TEMPORAL_TRANSFORMER:
            time_rel_pos_bias = self.time_rel_pos_bias(x.shape[2], device = x.device)
        else:
            time_rel_pos_bias = None
        

        # all-zero and all-keep masks
        zero = torch.zeros(batch, dtype=torch.bool).to(x.device)
        keep = torch.zeros(batch, dtype=torch.bool).to(x.device)
        if self.training:
            nzero = (torch.rand(batch) < self.p_all_zero).sum()
            nkeep = (torch.rand(batch) < self.p_all_keep).sum()
            index = torch.randperm(batch)
            zero[index[0:nzero]] = True
            keep[index[nzero:nzero + nkeep]] = True
        assert not (zero & keep).any()
        misc_dropout = partial(self.misc_dropout, zero = zero, keep = keep)


        concat = x.new_zeros(batch, self.concat_dim, f, h, w)
            
            
        # local_image_embedding (first frame)
        if local_image is not None:
            local_image = rearrange(local_image, 'b c f h w -> (b f) c h w')
            local_image = self.local_image_embedding(local_image)

            h = local_image.shape[2]
            local_image = self.local_image_embedding_after(rearrange(local_image, '(b f) c h w -> (b h w) f c', b = batch))
            local_image = rearrange(local_image, '(b h w) f c -> b c f h w', b = batch, h = h)

            concat = concat + misc_dropout(local_image)
        
        if dwpose is not None:
            if 'randomref_pose' in self.video_compositions:
                dwpose_random_ref = dwpose[:,:,:1].clone()
                dwpose = dwpose[:,:,1:]
            dwpose = rearrange(dwpose, 'b c f h w -> (b f) c h w')
            dwpose = self.dwpose_embedding(dwpose)

            h = dwpose.shape[2]
            dwpose = self.dwpose_embedding_after(rearrange(dwpose, '(b f) c h w -> (b h w) f c', b = batch))
            dwpose = rearrange(dwpose, '(b h w) f c -> b c f h w', b = batch, h = h)
            concat = concat + misc_dropout(dwpose)

        randomref_b = x.new_zeros(batch, self.concat_dim+4, 1, h, w)
        if randomref is not None:
            randomref = rearrange(randomref[:,:,:1,], 'b c f h w -> (b f) c h w')
            randomref = self.randomref_embedding2(randomref)

            h = randomref.shape[2]
            randomref = self.randomref_embedding_after2(rearrange(randomref, '(b f) c h w -> (b h w) f c', b = batch))
            if 'randomref_pose' in self.video_compositions:
                dwpose_random_ref = rearrange(dwpose_random_ref, 'b c f h w -> (b f) c h w')
                dwpose_random_ref = self.randomref_pose2_embedding(dwpose_random_ref)
                dwpose_random_ref = self.randomref_pose2_embedding_after(rearrange(dwpose_random_ref, '(b f) c h w -> (b h w) f c', b = batch))
                randomref = randomref + dwpose_random_ref

            randomref_a = rearrange(randomref, '(b h w) f c -> b c f h w', b = batch, h = h)
            randomref_b = randomref_b + randomref_a
            

        x = torch.cat([randomref_b, torch.cat([x, concat], dim=1)], dim=2)
        x = rearrange(x, 'b c f h w -> (b f) c h w')
        x = self.pre_image(x)
        x = rearrange(x, '(b f) c h w -> b c f h w', b = batch)

        # embeddings
        if self.use_fps_condition and fps is not None:
            e = self.time_embed(sinusoidal_embedding(t, self.dim)) + self.fps_embedding(sinusoidal_embedding(fps, self.dim))
        else:
            e = self.time_embed(sinusoidal_embedding(t, self.dim)) 
        
        context = x.new_zeros(batch, 0, self.context_dim)
        
        
        if image is not None:
            y_context = self.zero_y.repeat(batch, 1, 1)
            context = torch.cat([context, y_context], dim=1)

            image_context = misc_dropout(self.pre_image_condition(image).view(-1, self.num_tokens, self.context_dim))  # torch.cat([y[:,:-1,:], self.pre_image_condition(y[:,-1:,:]) ], dim=1) 
            context = torch.cat([context, image_context], dim=1)
        else:
            y_context = self.zero_y.repeat(batch, 1, 1)
            context = torch.cat([context, y_context], dim=1)
            image_context = torch.zeros_like(self.zero_y.repeat(batch, 1, 1))[:,:self.num_tokens]
            context = torch.cat([context, image_context], dim=1)

        # repeat f times for spatial e and context   
        e = e.repeat_interleave(repeats=f+1, dim=0) 
        context = context.repeat_interleave(repeats=f+1, dim=0) 



        ## always in shape (b f) c h w, except for temporal layer
        x = rearrange(x, 'b c f h w -> (b f) c h w')
        # encoder
        xs = []
        for block in self.input_blocks:
            x = self._forward_single(block, x, e, context, time_rel_pos_bias, focus_present_mask, video_mask)
            xs.append(x)
        
        # middle
        for block in self.middle_block:
            x = self._forward_single(block, x, e, context, time_rel_pos_bias,focus_present_mask, video_mask)
        
        # decoder
        for block in self.output_blocks:
            x = torch.cat([x, xs.pop()], dim=1)
            x = self._forward_single(block, x, e, context, time_rel_pos_bias,focus_present_mask, video_mask, reference=xs[-1] if len(xs) > 0 else None)
        
        # head
        x = self.out(x)

        # reshape back to (b c f h w)
        x = rearrange(x, '(b f) c h w -> b c f h w', b = batch)
        return x[:,:,1:]
    
    def _forward_single(self, module, x, e, context, time_rel_pos_bias, focus_present_mask, video_mask, reference=None):
        if isinstance(module, ResidualBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = x.contiguous()
            x = module(x, e, reference)
        elif isinstance(module, ResBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = x.contiguous()
            x = module(x, e, self.batch)
        elif isinstance(module, SpatialTransformer):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, TemporalTransformer):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x, context)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, CrossAttention):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, MemoryEfficientCrossAttention):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, BasicTransformerBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = module(x, context)
        elif isinstance(module, FeedForward):
            x = module(x, context)
        elif isinstance(module, Upsample):
            x = module(x)
        elif isinstance(module, Downsample):
            x = module(x)
        elif isinstance(module, Resample):
            x = module(x, reference)
        elif isinstance(module, TemporalAttentionBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x, time_rel_pos_bias, focus_present_mask, video_mask)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, TemporalAttentionMultiBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x, time_rel_pos_bias, focus_present_mask, video_mask)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, InitTemporalConvBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, TemporalConvBlock):
            module = checkpoint_wrapper(module) if self.use_checkpoint else module
            x = rearrange(x, '(b f) c h w -> b c f h w', b = self.batch)
            x = module(x)
            x = rearrange(x, 'b c f h w -> (b f) c h w')
        elif isinstance(module, nn.ModuleList):
            for block in module:
                x = self._forward_single(block,  x, e, context, time_rel_pos_bias, focus_present_mask, video_mask, reference)
        else:
            x = module(x)
        return x