Spaces:
Running
Running
File size: 23,023 Bytes
2ba4412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 |
'''
/*
*Copyright (c) 2021, Alibaba Group;
*Licensed under the Apache License, Version 2.0 (the "License");
*you may not use this file except in compliance with the License.
*You may obtain a copy of the License at
* http://www.apache.org/licenses/LICENSE-2.0
*Unless required by applicable law or agreed to in writing, software
*distributed under the License is distributed on an "AS IS" BASIS,
*WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*See the License for the specific language governing permissions and
*limitations under the License.
*/
'''
import os
import re
import os.path as osp
import sys
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-4]))
import json
import math
import torch
import pynvml
import logging
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.cuda.amp as amp
from importlib import reload
import torch.distributed as dist
import torch.multiprocessing as mp
import random
from einops import rearrange
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torch.nn.parallel import DistributedDataParallel
import utils.transforms as data
from ..modules.config import cfg
from utils.seed import setup_seed
from utils.multi_port import find_free_port
from utils.assign_cfg import assign_signle_cfg
from utils.distributed import generalized_all_gather, all_reduce
from utils.video_op import save_i2vgen_video, save_t2vhigen_video_safe, save_video_multiple_conditions_not_gif_horizontal_3col
from tools.modules.autoencoder import get_first_stage_encoding
from utils.registry_class import INFER_ENGINE, MODEL, EMBEDDER, AUTO_ENCODER, DIFFUSION
from copy import copy
import cv2
@INFER_ENGINE.register_function()
def inference_unianimate_long_entrance(cfg_update, **kwargs):
for k, v in cfg_update.items():
if isinstance(v, dict) and k in cfg:
cfg[k].update(v)
else:
cfg[k] = v
if not 'MASTER_ADDR' in os.environ:
os.environ['MASTER_ADDR']='localhost'
os.environ['MASTER_PORT']= find_free_port()
cfg.pmi_rank = int(os.getenv('RANK', 0))
cfg.pmi_world_size = int(os.getenv('WORLD_SIZE', 1))
if cfg.debug:
cfg.gpus_per_machine = 1
cfg.world_size = 1
else:
cfg.gpus_per_machine = torch.cuda.device_count()
cfg.world_size = cfg.pmi_world_size * cfg.gpus_per_machine
if cfg.world_size == 1:
worker(0, cfg, cfg_update)
else:
mp.spawn(worker, nprocs=cfg.gpus_per_machine, args=(cfg, cfg_update))
return cfg
def make_masked_images(imgs, masks):
masked_imgs = []
for i, mask in enumerate(masks):
# concatenation
masked_imgs.append(torch.cat([imgs[i] * (1 - mask), (1 - mask)], dim=1))
return torch.stack(masked_imgs, dim=0)
def load_video_frames(ref_image_path, pose_file_path, train_trans, vit_transforms, train_trans_pose, max_frames=32, frame_interval = 1, resolution=[512, 768], get_first_frame=True, vit_resolution=[224, 224]):
for _ in range(5):
try:
dwpose_all = {}
frames_all = {}
for ii_index in sorted(os.listdir(pose_file_path)):
if ii_index != "ref_pose.jpg":
dwpose_all[ii_index] = Image.open(pose_file_path+"/"+ii_index)
frames_all[ii_index] = Image.fromarray(cv2.cvtColor(cv2.imread(ref_image_path),cv2.COLOR_BGR2RGB))
# frames_all[ii_index] = Image.open(ref_image_path)
pose_ref = Image.open(os.path.join(pose_file_path, "ref_pose.jpg"))
first_eq_ref = False
# sample max_frames poses for video generation
stride = frame_interval
_total_frame_num = len(frames_all)
if max_frames == "None":
max_frames = (_total_frame_num-1)//frame_interval + 1
cover_frame_num = (stride * (max_frames-1)+1)
if _total_frame_num < cover_frame_num:
print('_total_frame_num is smaller than cover_frame_num, the sampled frame interval is changed')
start_frame = 0 # we set start_frame = 0 because the pose alignment is performed on the first frame
end_frame = _total_frame_num
stride = max((_total_frame_num-1//(max_frames-1)),1)
end_frame = stride*max_frames
else:
start_frame = 0 # we set start_frame = 0 because the pose alignment is performed on the first frame
end_frame = start_frame + cover_frame_num
frame_list = []
dwpose_list = []
random_ref_frame = frames_all[list(frames_all.keys())[0]]
if random_ref_frame.mode != 'RGB':
random_ref_frame = random_ref_frame.convert('RGB')
random_ref_dwpose = pose_ref
if random_ref_dwpose.mode != 'RGB':
random_ref_dwpose = random_ref_dwpose.convert('RGB')
for i_index in range(start_frame, end_frame, stride):
if i_index == start_frame and first_eq_ref:
i_key = list(frames_all.keys())[i_index]
i_frame = frames_all[i_key]
if i_frame.mode != 'RGB':
i_frame = i_frame.convert('RGB')
i_dwpose = frames_pose_ref
if i_dwpose.mode != 'RGB':
i_dwpose = i_dwpose.convert('RGB')
frame_list.append(i_frame)
dwpose_list.append(i_dwpose)
else:
# added
if first_eq_ref:
i_index = i_index - stride
i_key = list(frames_all.keys())[i_index]
i_frame = frames_all[i_key]
if i_frame.mode != 'RGB':
i_frame = i_frame.convert('RGB')
i_dwpose = dwpose_all[i_key]
if i_dwpose.mode != 'RGB':
i_dwpose = i_dwpose.convert('RGB')
frame_list.append(i_frame)
dwpose_list.append(i_dwpose)
have_frames = len(frame_list)>0
middle_indix = 0
if have_frames:
ref_frame = frame_list[middle_indix]
vit_frame = vit_transforms(ref_frame)
random_ref_frame_tmp = train_trans_pose(random_ref_frame)
random_ref_dwpose_tmp = train_trans_pose(random_ref_dwpose)
misc_data_tmp = torch.stack([train_trans_pose(ss) for ss in frame_list], dim=0)
video_data_tmp = torch.stack([train_trans(ss) for ss in frame_list], dim=0)
dwpose_data_tmp = torch.stack([train_trans_pose(ss) for ss in dwpose_list], dim=0)
video_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
dwpose_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
misc_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
random_ref_frame_data = torch.zeros(max_frames, 3, resolution[1], resolution[0]) # [32, 3, 512, 768]
random_ref_dwpose_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
if have_frames:
video_data[:len(frame_list), ...] = video_data_tmp
misc_data[:len(frame_list), ...] = misc_data_tmp
dwpose_data[:len(frame_list), ...] = dwpose_data_tmp
random_ref_frame_data[:,...] = random_ref_frame_tmp
random_ref_dwpose_data[:,...] = random_ref_dwpose_tmp
break
except Exception as e:
logging.info('{} read video frame failed with error: {}'.format(pose_file_path, e))
continue
return vit_frame, video_data, misc_data, dwpose_data, random_ref_frame_data, random_ref_dwpose_data, max_frames
def worker(gpu, cfg, cfg_update):
'''
Inference worker for each gpu
'''
for k, v in cfg_update.items():
if isinstance(v, dict) and k in cfg:
cfg[k].update(v)
else:
cfg[k] = v
cfg.gpu = gpu
cfg.seed = int(cfg.seed)
cfg.rank = cfg.pmi_rank * cfg.gpus_per_machine + gpu
setup_seed(cfg.seed + cfg.rank)
if not cfg.debug:
torch.cuda.set_device(gpu)
torch.backends.cudnn.benchmark = True
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
torch.backends.cudnn.benchmark = False
dist.init_process_group(backend='nccl', world_size=cfg.world_size, rank=cfg.rank)
# [Log] Save logging and make log dir
log_dir = generalized_all_gather(cfg.log_dir)[0]
inf_name = osp.basename(cfg.cfg_file).split('.')[0]
test_model = osp.basename(cfg.test_model).split('.')[0].split('_')[-1]
cfg.log_dir = osp.join(cfg.log_dir, '%s' % (inf_name))
os.makedirs(cfg.log_dir, exist_ok=True)
log_file = osp.join(cfg.log_dir, 'log_%02d.txt' % (cfg.rank))
cfg.log_file = log_file
reload(logging)
logging.basicConfig(
level=logging.INFO,
format='[%(asctime)s] %(levelname)s: %(message)s',
handlers=[
logging.FileHandler(filename=log_file),
logging.StreamHandler(stream=sys.stdout)])
logging.info(cfg)
logging.info(f"Running UniAnimate inference on gpu {gpu}")
# [Diffusion]
diffusion = DIFFUSION.build(cfg.Diffusion)
# [Data] Data Transform
train_trans = data.Compose([
data.Resize(cfg.resolution),
data.ToTensor(),
data.Normalize(mean=cfg.mean, std=cfg.std)
])
train_trans_pose = data.Compose([
data.Resize(cfg.resolution),
data.ToTensor(),
]
)
vit_transforms = T.Compose([
data.Resize(cfg.vit_resolution),
T.ToTensor(),
T.Normalize(mean=cfg.vit_mean, std=cfg.vit_std)])
# [Model] embedder
clip_encoder = EMBEDDER.build(cfg.embedder)
clip_encoder.model.to(gpu)
with torch.no_grad():
_, _, zero_y = clip_encoder(text="")
# [Model] auotoencoder
autoencoder = AUTO_ENCODER.build(cfg.auto_encoder)
autoencoder.eval() # freeze
for param in autoencoder.parameters():
param.requires_grad = False
autoencoder.cuda()
# [Model] UNet
if "config" in cfg.UNet:
cfg.UNet["config"] = cfg
cfg.UNet["zero_y"] = zero_y
model = MODEL.build(cfg.UNet)
state_dict = torch.load(cfg.test_model, map_location='cpu')
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
if 'step' in state_dict:
resume_step = state_dict['step']
else:
resume_step = 0
status = model.load_state_dict(state_dict, strict=True)
logging.info('Load model from {} with status {}'.format(cfg.test_model, status))
model = model.to(gpu)
model.eval()
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
model.to(torch.float16)
else:
model = DistributedDataParallel(model, device_ids=[gpu]) if not cfg.debug else model
torch.cuda.empty_cache()
test_list = cfg.test_list_path
num_videos = len(test_list)
logging.info(f'There are {num_videos} videos. with {cfg.round} times')
test_list = [item for _ in range(cfg.round) for item in test_list]
for idx, file_path in enumerate(test_list):
cfg.frame_interval, ref_image_key, pose_seq_key = file_path[0], file_path[1], file_path[2]
manual_seed = int(cfg.seed + cfg.rank + idx//num_videos)
setup_seed(manual_seed)
logging.info(f"[{idx}]/[{len(test_list)}] Begin to sample {ref_image_key}, pose sequence from {pose_seq_key} init seed {manual_seed} ...")
vit_frame, video_data, misc_data, dwpose_data, random_ref_frame_data, random_ref_dwpose_data, max_frames = load_video_frames(ref_image_key, pose_seq_key, train_trans, vit_transforms, train_trans_pose, max_frames=cfg.max_frames, frame_interval =cfg.frame_interval, resolution=cfg.resolution)
cfg.max_frames_new = max_frames
misc_data = misc_data.unsqueeze(0).to(gpu)
vit_frame = vit_frame.unsqueeze(0).to(gpu)
dwpose_data = dwpose_data.unsqueeze(0).to(gpu)
random_ref_frame_data = random_ref_frame_data.unsqueeze(0).to(gpu)
random_ref_dwpose_data = random_ref_dwpose_data.unsqueeze(0).to(gpu)
### save for visualization
misc_backups = copy(misc_data)
frames_num = misc_data.shape[1]
misc_backups = rearrange(misc_backups, 'b f c h w -> b c f h w')
mv_data_video = []
### local image (first frame)
image_local = []
if 'local_image' in cfg.video_compositions:
frames_num = misc_data.shape[1]
bs_vd_local = misc_data.shape[0]
image_local = misc_data[:,:1].clone().repeat(1,frames_num,1,1,1)
image_local_clone = rearrange(image_local, 'b f c h w -> b c f h w', b = bs_vd_local)
image_local = rearrange(image_local, 'b f c h w -> b c f h w', b = bs_vd_local)
if hasattr(cfg, "latent_local_image") and cfg.latent_local_image:
with torch.no_grad():
temporal_length = frames_num
encoder_posterior = autoencoder.encode(video_data[:,0])
local_image_data = get_first_stage_encoding(encoder_posterior).detach()
image_local = local_image_data.unsqueeze(1).repeat(1,temporal_length,1,1,1) # [10, 16, 4, 64, 40]
### encode the video_data
bs_vd = misc_data.shape[0]
misc_data = rearrange(misc_data, 'b f c h w -> (b f) c h w')
misc_data_list = torch.chunk(misc_data, misc_data.shape[0]//cfg.chunk_size,dim=0)
with torch.no_grad():
random_ref_frame = []
if 'randomref' in cfg.video_compositions:
random_ref_frame_clone = rearrange(random_ref_frame_data, 'b f c h w -> b c f h w')
if hasattr(cfg, "latent_random_ref") and cfg.latent_random_ref:
temporal_length = random_ref_frame_data.shape[1]
encoder_posterior = autoencoder.encode(random_ref_frame_data[:,0].sub(0.5).div_(0.5))
random_ref_frame_data = get_first_stage_encoding(encoder_posterior).detach()
random_ref_frame_data = random_ref_frame_data.unsqueeze(1).repeat(1,temporal_length,1,1,1) # [10, 16, 4, 64, 40]
random_ref_frame = rearrange(random_ref_frame_data, 'b f c h w -> b c f h w')
if 'dwpose' in cfg.video_compositions:
bs_vd_local = dwpose_data.shape[0]
dwpose_data_clone = rearrange(dwpose_data.clone(), 'b f c h w -> b c f h w', b = bs_vd_local)
if 'randomref_pose' in cfg.video_compositions:
dwpose_data = torch.cat([random_ref_dwpose_data[:,:1], dwpose_data], dim=1)
dwpose_data = rearrange(dwpose_data, 'b f c h w -> b c f h w', b = bs_vd_local)
y_visual = []
if 'image' in cfg.video_compositions:
with torch.no_grad():
vit_frame = vit_frame.squeeze(1)
y_visual = clip_encoder.encode_image(vit_frame).unsqueeze(1) # [60, 1024]
y_visual0 = y_visual.clone()
with amp.autocast(enabled=True):
pynvml.nvmlInit()
handle=pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo=pynvml.nvmlDeviceGetMemoryInfo(handle)
cur_seed = torch.initial_seed()
logging.info(f"Current seed {cur_seed} ..., cfg.max_frames_new: {cfg.max_frames_new} ....")
noise = torch.randn([1, 4, cfg.max_frames_new, int(cfg.resolution[1]/cfg.scale), int(cfg.resolution[0]/cfg.scale)])
noise = noise.to(gpu)
# add a noise prior
noise = diffusion.q_sample(random_ref_frame.clone(), getattr(cfg, "noise_prior_value", 939), noise=noise)
if hasattr(cfg.Diffusion, "noise_strength"):
b, c, f, _, _= noise.shape
offset_noise = torch.randn(b, c, f, 1, 1, device=noise.device)
noise = noise + cfg.Diffusion.noise_strength * offset_noise
# construct model inputs (CFG)
full_model_kwargs=[{
'y': None,
"local_image": None if len(image_local) == 0 else image_local[:],
'image': None if len(y_visual) == 0 else y_visual0[:],
'dwpose': None if len(dwpose_data) == 0 else dwpose_data[:],
'randomref': None if len(random_ref_frame) == 0 else random_ref_frame[:],
},
{
'y': None,
"local_image": None,
'image': None,
'randomref': None,
'dwpose': None,
}]
# for visualization
full_model_kwargs_vis =[{
'y': None,
"local_image": None if len(image_local) == 0 else image_local_clone[:],
'image': None,
'dwpose': None if len(dwpose_data_clone) == 0 else dwpose_data_clone[:],
'randomref': None if len(random_ref_frame) == 0 else random_ref_frame_clone[:, :3],
},
{
'y': None,
"local_image": None,
'image': None,
'randomref': None,
'dwpose': None,
}]
partial_keys = [
['image', 'randomref', "dwpose"],
]
if hasattr(cfg, "partial_keys") and cfg.partial_keys:
partial_keys = cfg.partial_keys
for partial_keys_one in partial_keys:
model_kwargs_one = prepare_model_kwargs(partial_keys = partial_keys_one,
full_model_kwargs = full_model_kwargs,
use_fps_condition = cfg.use_fps_condition)
model_kwargs_one_vis = prepare_model_kwargs(partial_keys = partial_keys_one,
full_model_kwargs = full_model_kwargs_vis,
use_fps_condition = cfg.use_fps_condition)
noise_one = noise
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
clip_encoder.cpu() # add this line
autoencoder.cpu() # add this line
torch.cuda.empty_cache() # add this line
video_data = diffusion.ddim_sample_loop(
noise=noise_one,
context_size=cfg.context_size,
context_stride=cfg.context_stride,
context_overlap=cfg.context_overlap,
model=model.eval(),
model_kwargs=model_kwargs_one,
guide_scale=cfg.guide_scale,
ddim_timesteps=cfg.ddim_timesteps,
eta=0.0,
context_batch_size=getattr(cfg, "context_batch_size", 1)
)
if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
# if run forward of autoencoder or clip_encoder second times, load them again
clip_encoder.cuda()
autoencoder.cuda()
video_data = 1. / cfg.scale_factor * video_data # [1, 4, h, w]
video_data = rearrange(video_data, 'b c f h w -> (b f) c h w')
chunk_size = min(cfg.decoder_bs, video_data.shape[0])
video_data_list = torch.chunk(video_data, video_data.shape[0]//chunk_size, dim=0)
decode_data = []
for vd_data in video_data_list:
gen_frames = autoencoder.decode(vd_data)
decode_data.append(gen_frames)
video_data = torch.cat(decode_data, dim=0)
video_data = rearrange(video_data, '(b f) c h w -> b c f h w', b = cfg.batch_size).float()
text_size = cfg.resolution[-1]
cap_name = re.sub(r'[^\w\s]', '', ref_image_key.split("/")[-1].split('.')[0]) # .replace(' ', '_')
name = f'seed_{cur_seed}'
for ii in partial_keys_one:
name = name + "_" + ii
file_name = f'rank_{cfg.world_size:02d}_{cfg.rank:02d}_{idx:02d}_{name}_{cap_name}_{cfg.resolution[1]}x{cfg.resolution[0]}.mp4'
local_path = os.path.join(cfg.log_dir, f'{file_name}')
os.makedirs(os.path.dirname(local_path), exist_ok=True)
captions = "human"
del model_kwargs_one_vis[0][list(model_kwargs_one_vis[0].keys())[0]]
del model_kwargs_one_vis[1][list(model_kwargs_one_vis[1].keys())[0]]
save_video_multiple_conditions_not_gif_horizontal_3col(local_path, video_data.cpu(), model_kwargs_one_vis, misc_backups,
cfg.mean, cfg.std, nrow=1, save_fps=cfg.save_fps)
# try:
# save_t2vhigen_video_safe(local_path, video_data.cpu(), captions, cfg.mean, cfg.std, text_size)
# logging.info('Save video to dir %s:' % (local_path))
# except Exception as e:
# logging.info(f'Step: save text or video error with {e}')
logging.info('Congratulations! The inference is completed!')
# synchronize to finish some processes
if not cfg.debug:
torch.cuda.synchronize()
dist.barrier()
def prepare_model_kwargs(partial_keys, full_model_kwargs, use_fps_condition=False):
if use_fps_condition is True:
partial_keys.append('fps')
partial_model_kwargs = [{}, {}]
for partial_key in partial_keys:
partial_model_kwargs[0][partial_key] = full_model_kwargs[0][partial_key]
partial_model_kwargs[1][partial_key] = full_model_kwargs[1][partial_key]
return partial_model_kwargs
|