File size: 21,683 Bytes
2ba4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
'''
/* 
*Copyright (c) 2021, Alibaba Group;
*Licensed under the Apache License, Version 2.0 (the "License");
*you may not use this file except in compliance with the License.
*You may obtain a copy of the License at

*   http://www.apache.org/licenses/LICENSE-2.0

*Unless required by applicable law or agreed to in writing, software
*distributed under the License is distributed on an "AS IS" BASIS,
*WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
*See the License for the specific language governing permissions and
*limitations under the License.
*/
'''

import os
import re
import os.path as osp
import sys
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-4]))
import json
import math
import torch
import pynvml
import logging
import cv2
import numpy as np
from PIL import Image
from tqdm import tqdm
import torch.cuda.amp as amp
from importlib import reload
import torch.distributed as dist
import torch.multiprocessing as mp
import random
from einops import rearrange
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from torch.nn.parallel import DistributedDataParallel

import utils.transforms as data
from ..modules.config import cfg
from utils.seed import setup_seed
from utils.multi_port import find_free_port
from utils.assign_cfg import assign_signle_cfg
from utils.distributed import generalized_all_gather, all_reduce
from utils.video_op import save_i2vgen_video, save_t2vhigen_video_safe, save_video_multiple_conditions_not_gif_horizontal_3col
from tools.modules.autoencoder import get_first_stage_encoding
from utils.registry_class import INFER_ENGINE, MODEL, EMBEDDER, AUTO_ENCODER, DIFFUSION
from copy import copy
import cv2


@INFER_ENGINE.register_function()
def inference_unianimate_entrance(cfg_update,  **kwargs):
    for k, v in cfg_update.items():
        if isinstance(v, dict) and k in cfg:
            cfg[k].update(v)
        else:
            cfg[k] = v
    
    if not 'MASTER_ADDR' in os.environ:
        os.environ['MASTER_ADDR']='localhost'
        os.environ['MASTER_PORT']= find_free_port()
    cfg.pmi_rank = int(os.getenv('RANK', 0)) 
    cfg.pmi_world_size = int(os.getenv('WORLD_SIZE', 1))
    
    if cfg.debug:
        cfg.gpus_per_machine = 1
        cfg.world_size = 1
    else:
        cfg.gpus_per_machine = torch.cuda.device_count()
        cfg.world_size = cfg.pmi_world_size * cfg.gpus_per_machine
    
    if cfg.world_size == 1:
        worker(0, cfg, cfg_update)
    else:
        mp.spawn(worker, nprocs=cfg.gpus_per_machine, args=(cfg, cfg_update))
    return cfg


def make_masked_images(imgs, masks):
    masked_imgs = []
    for i, mask in enumerate(masks):        
        # concatenation
        masked_imgs.append(torch.cat([imgs[i] * (1 - mask), (1 - mask)], dim=1))
    return torch.stack(masked_imgs, dim=0)

def load_video_frames(ref_image_path, pose_file_path, train_trans, vit_transforms, train_trans_pose, max_frames=32, frame_interval = 1, resolution=[512, 768], get_first_frame=True, vit_resolution=[224, 224]):
    for _ in range(5):
        try:
            dwpose_all = {}
            frames_all = {}
            for ii_index in sorted(os.listdir(pose_file_path)):
                if ii_index != "ref_pose.jpg":
                    dwpose_all[ii_index] = Image.open(os.path.join(pose_file_path, ii_index))
                    frames_all[ii_index] = Image.fromarray(cv2.cvtColor(cv2.imread(ref_image_path), cv2.COLOR_BGR2RGB))

            pose_ref = Image.open(os.path.join(pose_file_path, "ref_pose.jpg"))

            # Sample max_frames poses for video generation
            stride = frame_interval
            total_frame_num = len(frames_all)
            cover_frame_num = (stride * (max_frames - 1) + 1)

            if total_frame_num < cover_frame_num:
                print(f'_total_frame_num ({total_frame_num}) is smaller than cover_frame_num ({cover_frame_num}), the sampled frame interval is changed')
                start_frame = 0
                end_frame = total_frame_num
                stride = max((total_frame_num - 1) // (max_frames - 1), 1)
                end_frame = stride * max_frames
            else:
                start_frame = 0
                end_frame = start_frame + cover_frame_num

            frame_list = []
            dwpose_list = []
            random_ref_frame = frames_all[list(frames_all.keys())[0]]
            if random_ref_frame.mode != 'RGB':
                random_ref_frame = random_ref_frame.convert('RGB')
            random_ref_dwpose = pose_ref
            if random_ref_dwpose.mode != 'RGB':
                random_ref_dwpose = random_ref_dwpose.convert('RGB')

            for i_index in range(start_frame, end_frame, stride):
                if i_index < len(frames_all):  # Check index within bounds
                    i_key = list(frames_all.keys())[i_index]
                    i_frame = frames_all[i_key]
                    if i_frame.mode != 'RGB':
                        i_frame = i_frame.convert('RGB')
                    
                    i_dwpose = dwpose_all[i_key]
                    if i_dwpose.mode != 'RGB':
                        i_dwpose = i_dwpose.convert('RGB')
                    frame_list.append(i_frame)
                    dwpose_list.append(i_dwpose)

            if frame_list:
                middle_indix = 0
                ref_frame = frame_list[middle_indix]
                vit_frame = vit_transforms(ref_frame)
                random_ref_frame_tmp = train_trans_pose(random_ref_frame)
                random_ref_dwpose_tmp = train_trans_pose(random_ref_dwpose)
                misc_data_tmp = torch.stack([train_trans_pose(ss) for ss in frame_list], dim=0)
                video_data_tmp = torch.stack([train_trans(ss) for ss in frame_list], dim=0)
                dwpose_data_tmp = torch.stack([train_trans_pose(ss) for ss in dwpose_list], dim=0)

                video_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
                dwpose_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
                misc_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
                random_ref_frame_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])
                random_ref_dwpose_data = torch.zeros(max_frames, 3, resolution[1], resolution[0])

                video_data[:len(frame_list), ...] = video_data_tmp
                misc_data[:len(frame_list), ...] = misc_data_tmp
                dwpose_data[:len(frame_list), ...] = dwpose_data_tmp
                random_ref_frame_data[:, ...] = random_ref_frame_tmp
                random_ref_dwpose_data[:, ...] = random_ref_dwpose_tmp

                return vit_frame, video_data, misc_data, dwpose_data, random_ref_frame_data, random_ref_dwpose_data

        except Exception as e:
            logging.info(f'Error reading video frame: {e}')
            continue

    return None, None, None, None, None, None

def worker(gpu, cfg, cfg_update):
    '''
    Inference worker for each gpu
    '''
    for k, v in cfg_update.items():
        if isinstance(v, dict) and k in cfg:
            cfg[k].update(v)
        else:
            cfg[k] = v

    cfg.gpu = gpu
    cfg.seed = int(cfg.seed)
    cfg.rank = cfg.pmi_rank * cfg.gpus_per_machine + gpu
    setup_seed(cfg.seed + cfg.rank)

    if not cfg.debug:
        torch.cuda.set_device(gpu)
        torch.backends.cudnn.benchmark = True
        if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
            torch.backends.cudnn.benchmark = False
        dist.init_process_group(backend='nccl', world_size=cfg.world_size, rank=cfg.rank)

    # [Log] Save logging and make log dir
    log_dir = generalized_all_gather(cfg.log_dir)[0]
    inf_name = osp.basename(cfg.cfg_file).split('.')[0]
    test_model = osp.basename(cfg.test_model).split('.')[0].split('_')[-1]
    
    cfg.log_dir = osp.join(cfg.log_dir, '%s' % (inf_name))
    os.makedirs(cfg.log_dir, exist_ok=True)
    log_file = osp.join(cfg.log_dir, 'log_%02d.txt' % (cfg.rank))
    cfg.log_file = log_file
    reload(logging)
    logging.basicConfig(
        level=logging.INFO,
        format='[%(asctime)s] %(levelname)s: %(message)s',
        handlers=[
            logging.FileHandler(filename=log_file),
            logging.StreamHandler(stream=sys.stdout)])
    logging.info(cfg)
    logging.info(f"Running UniAnimate inference on gpu {gpu}")
    
    # [Diffusion]
    diffusion = DIFFUSION.build(cfg.Diffusion)

    # [Data] Data Transform    
    train_trans = data.Compose([
        data.Resize(cfg.resolution),
        data.ToTensor(),
        data.Normalize(mean=cfg.mean, std=cfg.std)
        ])

    train_trans_pose = data.Compose([
        data.Resize(cfg.resolution),
        data.ToTensor(),
        ]
        )

    vit_transforms = T.Compose([
                data.Resize(cfg.vit_resolution),
                T.ToTensor(),
                T.Normalize(mean=cfg.vit_mean, std=cfg.vit_std)])

    # [Model] embedder
    clip_encoder = EMBEDDER.build(cfg.embedder)
    clip_encoder.model.to(gpu)
    with torch.no_grad():
        _, _, zero_y = clip_encoder(text="")
    

    # [Model] auotoencoder 
    autoencoder = AUTO_ENCODER.build(cfg.auto_encoder)
    autoencoder.eval() # freeze
    for param in autoencoder.parameters():
        param.requires_grad = False
    autoencoder.cuda()
    
    # [Model] UNet 
    if "config" in cfg.UNet:
        cfg.UNet["config"] = cfg
    cfg.UNet["zero_y"] = zero_y
    model = MODEL.build(cfg.UNet)
    state_dict = torch.load(cfg.test_model, map_location='cpu')
    if 'state_dict' in state_dict:
        state_dict = state_dict['state_dict']
    if 'step' in state_dict:
        resume_step = state_dict['step']
    else:
        resume_step = 0
    status = model.load_state_dict(state_dict, strict=True)
    logging.info('Load model from {} with status {}'.format(cfg.test_model, status))
    model = model.to(gpu)
    model.eval()
    if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
        model.to(torch.float16) 
    else:
        model = DistributedDataParallel(model, device_ids=[gpu]) if not cfg.debug else model
    torch.cuda.empty_cache()


    
    test_list = cfg.test_list_path
    num_videos = len(test_list)
    logging.info(f'There are {num_videos} videos. with {cfg.round} times')
    # test_list = [item for item in test_list for _ in range(cfg.round)]
    test_list = [item for _ in range(cfg.round) for item in test_list]
    
    for idx, file_path in enumerate(test_list):
        cfg.frame_interval, ref_image_key, pose_seq_key = file_path[0], file_path[1], file_path[2]
        
        manual_seed = int(cfg.seed + cfg.rank + idx//num_videos)
        setup_seed(manual_seed)
        logging.info(f"[{idx}]/[{len(test_list)}] Begin to sample {ref_image_key}, pose sequence from {pose_seq_key} init seed {manual_seed} ...")
        
        
        vit_frame, video_data, misc_data, dwpose_data, random_ref_frame_data, random_ref_dwpose_data = load_video_frames(ref_image_key, pose_seq_key, train_trans, vit_transforms, train_trans_pose, max_frames=cfg.max_frames, frame_interval =cfg.frame_interval, resolution=cfg.resolution)
        misc_data = misc_data.unsqueeze(0).to(gpu)
        vit_frame = vit_frame.unsqueeze(0).to(gpu)
        dwpose_data = dwpose_data.unsqueeze(0).to(gpu)
        random_ref_frame_data = random_ref_frame_data.unsqueeze(0).to(gpu)
        random_ref_dwpose_data = random_ref_dwpose_data.unsqueeze(0).to(gpu)

        ### save for visualization
        misc_backups = copy(misc_data)
        frames_num = misc_data.shape[1]
        misc_backups = rearrange(misc_backups, 'b f c h w -> b c f h w')
        mv_data_video = []
        

        ### local image (first frame)
        image_local = []
        if 'local_image' in cfg.video_compositions:
            frames_num = misc_data.shape[1]
            bs_vd_local = misc_data.shape[0]
            image_local = misc_data[:,:1].clone().repeat(1,frames_num,1,1,1)
            image_local_clone = rearrange(image_local, 'b f c h w -> b c f h w', b = bs_vd_local)
            image_local = rearrange(image_local, 'b f c h w -> b c f h w', b = bs_vd_local)
            if hasattr(cfg, "latent_local_image") and cfg.latent_local_image:
                with torch.no_grad():
                    temporal_length = frames_num
                    encoder_posterior = autoencoder.encode(video_data[:,0])
                    local_image_data = get_first_stage_encoding(encoder_posterior).detach()
                    image_local = local_image_data.unsqueeze(1).repeat(1,temporal_length,1,1,1) # [10, 16, 4, 64, 40]
            

        
        ### encode the video_data
        bs_vd = misc_data.shape[0]
        misc_data = rearrange(misc_data, 'b f c h w -> (b f) c h w')
        misc_data_list = torch.chunk(misc_data, misc_data.shape[0]//cfg.chunk_size,dim=0)
        

        with torch.no_grad():
            
            random_ref_frame = []
            if 'randomref' in cfg.video_compositions:
                random_ref_frame_clone = rearrange(random_ref_frame_data, 'b f c h w -> b c f h w')
                if hasattr(cfg, "latent_random_ref") and cfg.latent_random_ref:
                    
                    temporal_length = random_ref_frame_data.shape[1]
                    encoder_posterior = autoencoder.encode(random_ref_frame_data[:,0].sub(0.5).div_(0.5))
                    random_ref_frame_data = get_first_stage_encoding(encoder_posterior).detach()
                    random_ref_frame_data = random_ref_frame_data.unsqueeze(1).repeat(1,temporal_length,1,1,1) # [10, 16, 4, 64, 40]

                random_ref_frame = rearrange(random_ref_frame_data, 'b f c h w -> b c f h w')


            if 'dwpose' in cfg.video_compositions:
                bs_vd_local = dwpose_data.shape[0]
                dwpose_data_clone = rearrange(dwpose_data.clone(), 'b f c h w -> b c f h w', b = bs_vd_local)
                if 'randomref_pose' in cfg.video_compositions:
                    dwpose_data = torch.cat([random_ref_dwpose_data[:,:1], dwpose_data], dim=1)
                dwpose_data = rearrange(dwpose_data, 'b f c h w -> b c f h w', b = bs_vd_local)

            
            y_visual = []
            if 'image' in cfg.video_compositions:
                with torch.no_grad():
                    vit_frame = vit_frame.squeeze(1)
                    y_visual = clip_encoder.encode_image(vit_frame).unsqueeze(1) # [60, 1024]
                    y_visual0 = y_visual.clone()
       

        with amp.autocast(enabled=True):
            pynvml.nvmlInit()
            handle=pynvml.nvmlDeviceGetHandleByIndex(0)
            meminfo=pynvml.nvmlDeviceGetMemoryInfo(handle)
            cur_seed = torch.initial_seed()
            logging.info(f"Current seed {cur_seed} ...")

            noise = torch.randn([1, 4, cfg.max_frames, int(cfg.resolution[1]/cfg.scale), int(cfg.resolution[0]/cfg.scale)])
            noise = noise.to(gpu)
            
            if hasattr(cfg.Diffusion, "noise_strength"):
                b, c, f, _, _= noise.shape
                offset_noise = torch.randn(b, c, f, 1, 1, device=noise.device)
                noise = noise + cfg.Diffusion.noise_strength * offset_noise
            
            # add a noise prior
            noise = diffusion.q_sample(random_ref_frame.clone(), getattr(cfg, "noise_prior_value", 949), noise=noise)

            # construct model inputs (CFG)
            full_model_kwargs=[{
                                        'y': None,
                                        "local_image": None if len(image_local) == 0 else image_local[:],
                                        'image': None if len(y_visual) == 0 else y_visual0[:],
                                        'dwpose': None if len(dwpose_data) == 0 else dwpose_data[:],
                                        'randomref': None if len(random_ref_frame) == 0 else random_ref_frame[:],
                                       }, 
                                       {
                                        'y': None,
                                        "local_image": None, 
                                        'image': None,
                                        'randomref': None,
                                        'dwpose': None, 
                                       }]

            # for visualization
            full_model_kwargs_vis =[{
                                        'y': None,
                                        "local_image": None if len(image_local) == 0 else image_local_clone[:],
                                        'image': None,
                                        'dwpose': None if len(dwpose_data_clone) == 0 else dwpose_data_clone[:],
                                        'randomref': None if len(random_ref_frame) == 0 else random_ref_frame_clone[:, :3],
                                       }, 
                                       {
                                        'y': None,
                                        "local_image": None, 
                                        'image': None,
                                        'randomref': None,
                                        'dwpose': None, 
                                       }]

            
            partial_keys = [
                    ['image', 'randomref', "dwpose"],
                ]
            if hasattr(cfg, "partial_keys") and cfg.partial_keys:
                partial_keys = cfg.partial_keys


            for partial_keys_one in partial_keys:
                model_kwargs_one = prepare_model_kwargs(partial_keys = partial_keys_one,
                                    full_model_kwargs = full_model_kwargs,
                                    use_fps_condition = cfg.use_fps_condition)
                model_kwargs_one_vis = prepare_model_kwargs(partial_keys = partial_keys_one,
                                    full_model_kwargs = full_model_kwargs_vis,
                                    use_fps_condition = cfg.use_fps_condition)
                noise_one = noise
                
                if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
                    clip_encoder.cpu() # add this line
                    autoencoder.cpu() # add this line
                    torch.cuda.empty_cache() # add this line
                    
                video_data = diffusion.ddim_sample_loop(
                    noise=noise_one,
                    model=model.eval(), 
                    model_kwargs=model_kwargs_one,
                    guide_scale=cfg.guide_scale,
                    ddim_timesteps=cfg.ddim_timesteps,
                    eta=0.0)
                
                if hasattr(cfg, "CPU_CLIP_VAE") and cfg.CPU_CLIP_VAE:
                    # if run forward of  autoencoder or clip_encoder second times, load them again
                    clip_encoder.cuda()
                    autoencoder.cuda()
                video_data = 1. / cfg.scale_factor * video_data 
                video_data = rearrange(video_data, 'b c f h w -> (b f) c h w')
                chunk_size = min(cfg.decoder_bs, video_data.shape[0])
                video_data_list = torch.chunk(video_data, video_data.shape[0]//chunk_size, dim=0)
                decode_data = []
                for vd_data in video_data_list:
                    gen_frames = autoencoder.decode(vd_data)
                    decode_data.append(gen_frames)
                video_data = torch.cat(decode_data, dim=0)
                video_data = rearrange(video_data, '(b f) c h w -> b c f h w', b = cfg.batch_size).float()
                
                text_size = cfg.resolution[-1]
                cap_name = re.sub(r'[^\w\s]', '', ref_image_key.split("/")[-1].split('.')[0]) # .replace(' ', '_')
                name = f'seed_{cur_seed}'
                for ii in partial_keys_one:
                    name = name + "_" + ii
                file_name = f'rank_{cfg.world_size:02d}_{cfg.rank:02d}_{idx:02d}_{name}_{cap_name}_{cfg.resolution[1]}x{cfg.resolution[0]}.mp4'
                local_path = os.path.join(cfg.log_dir, f'{file_name}')
                os.makedirs(os.path.dirname(local_path), exist_ok=True)
                captions = "human"
                del model_kwargs_one_vis[0][list(model_kwargs_one_vis[0].keys())[0]]
                del model_kwargs_one_vis[1][list(model_kwargs_one_vis[1].keys())[0]]
                
                save_video_multiple_conditions_not_gif_horizontal_3col(local_path, video_data.cpu(), model_kwargs_one_vis, misc_backups, 
                                                cfg.mean, cfg.std, nrow=1, save_fps=cfg.save_fps)
                
                # try:
                #     save_t2vhigen_video_safe(local_path, video_data.cpu(), captions, cfg.mean, cfg.std, text_size)
                #     logging.info('Save video to dir %s:' % (local_path))
                # except Exception as e:
                #     logging.info(f'Step: save text or video error with {e}')
    
    logging.info('Congratulations! The inference is completed!')
    # synchronize to finish some processes
    if not cfg.debug:
        torch.cuda.synchronize()
        dist.barrier()

def prepare_model_kwargs(partial_keys, full_model_kwargs, use_fps_condition=False):
    
    if use_fps_condition is True:
        partial_keys.append('fps')

    partial_model_kwargs = [{}, {}]
    for partial_key in partial_keys:
        partial_model_kwargs[0][partial_key] = full_model_kwargs[0][partial_key]
        partial_model_kwargs[1][partial_key] = full_model_kwargs[1][partial_key]

    return partial_model_kwargs