File size: 5,771 Bytes
2ba4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import sys
import imageio
import numpy as np
import os.path as osp
sys.path.insert(0, '/'.join(osp.realpath(__file__).split('/')[:-2]))
from PIL import Image, ImageDraw, ImageFont
import torchvision.transforms as T

import utils.transforms as data
from tools.modules.config import cfg
from utils.config import Config as pConfig
from utils.registry_class import ENGINE, DATASETS

from tools import *

def test_video_dataset():
    cfg_update = pConfig(load=True)

    for k, v in cfg_update.cfg_dict.items():
        if isinstance(v, dict) and k in cfg:
            cfg[k].update(v)
        else:
            cfg[k] = v

    exp_name = os.path.basename(cfg.cfg_file).split('.')[0]
    save_dir = os.path.join('workspace', 'test_data/datasets', cfg.vid_dataset['type'], exp_name)
    os.system('rm -rf %s' % (save_dir))
    os.makedirs(save_dir, exist_ok=True)

    train_trans = data.Compose([
        data.CenterCropWide(size=cfg.resolution),
        data.ToTensor(),
        data.Normalize(mean=cfg.mean, std=cfg.std)])
    vit_trans = T.Compose([
        data.CenterCropWide(cfg.vit_resolution),
        T.ToTensor(),
        T.Normalize(mean=cfg.vit_mean, std=cfg.vit_std)])

    video_mean = torch.tensor(cfg.mean).view(1, -1, 1, 1) #n c f h w
    video_std = torch.tensor(cfg.std).view(1, -1, 1, 1) #n c f h w

    img_mean = torch.tensor(cfg.mean).view(-1, 1, 1) # c f h w
    img_std = torch.tensor(cfg.std).view(-1, 1, 1) # c f h w

    vit_mean = torch.tensor(cfg.vit_mean).view(-1, 1, 1) # c f h w
    vit_std = torch.tensor(cfg.vit_std).view(-1, 1, 1) # c f h w

    txt_size = cfg.resolution[1]
    nc = int(38 * (txt_size / 256))
    font = ImageFont.truetype('data/font/DejaVuSans.ttf', size=13)

    dataset = DATASETS.build(cfg.vid_dataset, sample_fps=cfg.sample_fps[0], transforms=train_trans, vit_transforms=vit_trans)
    print('There are %d videos' % (len(dataset)))
    for idx, item in enumerate(dataset):
        ref_frame, vit_frame, video_data, caption, video_key = item

        video_data = video_data.mul_(video_std).add_(video_mean)
        video_data.clamp_(0, 1)
        video_data = video_data.permute(0, 2, 3, 1)
        video_data = [(image.numpy() * 255).astype('uint8') for image in video_data]

        # Single Image
        ref_frame = ref_frame.mul_(img_mean).add_(img_std)
        ref_frame.clamp_(0, 1)
        ref_frame = ref_frame.permute(1, 2, 0)
        ref_frame = (ref_frame.numpy() * 255).astype('uint8')

        # Text image
        txt_img = Image.new("RGB", (txt_size, txt_size), color="white") 
        draw = ImageDraw.Draw(txt_img)
        lines = "\n".join(caption[start:start + nc] for start in range(0, len(caption), nc))
        draw.text((0, 0), lines, fill="black", font=font)
        txt_img = np.array(txt_img)

        video_data = [np.concatenate([ref_frame, u, txt_img], axis=1) for u in video_data]
        spath = os.path.join(save_dir, '%04d.gif' % (idx))
        imageio.mimwrite(spath, video_data, fps =8)

        # if idx > 100: break


def test_vit_image(test_video_flag=True):
    cfg_update = pConfig(load=True)

    for k, v in cfg_update.cfg_dict.items():
        if isinstance(v, dict) and k in cfg:
            cfg[k].update(v)
        else:
            cfg[k] = v

    exp_name = os.path.basename(cfg.cfg_file).split('.')[0]
    save_dir = os.path.join('workspace', 'test_data/datasets', cfg.img_dataset['type'], exp_name)
    os.system('rm -rf %s' % (save_dir))
    os.makedirs(save_dir, exist_ok=True)

    train_trans = data.Compose([
        data.CenterCropWide(size=cfg.resolution),
        data.ToTensor(),
        data.Normalize(mean=cfg.mean, std=cfg.std)])
    vit_trans = data.Compose([
        data.CenterCropWide(cfg.resolution),
        data.Resize(cfg.vit_resolution),
        data.ToTensor(),
        data.Normalize(mean=cfg.vit_mean, std=cfg.vit_std)])

    img_mean = torch.tensor(cfg.mean).view(-1, 1, 1) # c f h w
    img_std = torch.tensor(cfg.std).view(-1, 1, 1) # c f h w
    
    vit_mean = torch.tensor(cfg.vit_mean).view(-1, 1, 1) # c f h w
    vit_std = torch.tensor(cfg.vit_std).view(-1, 1, 1) # c f h w

    txt_size = cfg.resolution[1]
    nc = int(38 * (txt_size / 256))
    font = ImageFont.truetype('artist/font/DejaVuSans.ttf', size=13)

    dataset = DATASETS.build(cfg.img_dataset, transforms=train_trans, vit_transforms=vit_trans)
    print('There are %d videos' % (len(dataset)))
    for idx, item in enumerate(dataset):
        ref_frame, vit_frame, video_data, caption, video_key = item
        video_data = video_data.mul_(img_std).add_(img_mean)
        video_data.clamp_(0, 1)
        video_data = video_data.permute(0, 2, 3, 1)
        video_data = [(image.numpy() * 255).astype('uint8') for image in video_data]

        # Single Image
        vit_frame = vit_frame.mul_(vit_std).add_(vit_mean)
        vit_frame.clamp_(0, 1)
        vit_frame = vit_frame.permute(1, 2, 0)
        vit_frame = (vit_frame.numpy() * 255).astype('uint8')

        zero_frame = np.zeros((cfg.resolution[1], cfg.resolution[1], 3), dtype=np.uint8)
        zero_frame[:vit_frame.shape[0], :vit_frame.shape[1], :] = vit_frame

        # Text image
        txt_img = Image.new("RGB", (txt_size, txt_size), color="white") 
        draw = ImageDraw.Draw(txt_img)
        lines = "\n".join(caption[start:start + nc] for start in range(0, len(caption), nc))
        draw.text((0, 0), lines, fill="black", font=font)
        txt_img = np.array(txt_img)

        video_data = [np.concatenate([zero_frame, u, txt_img], axis=1) for u in video_data]
        spath = os.path.join(save_dir, '%04d.gif' % (idx))
        imageio.mimwrite(spath, video_data, fps =8)

        # if idx > 100: break


if __name__ == '__main__':
    # test_video_dataset()
    test_vit_image()