Spaces:
Running
Running
File size: 17,584 Bytes
2ba4412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 |
"""
GaussianDiffusion wraps operators for denoising diffusion models, including the
diffusion and denoising processes, as well as the loss evaluation.
"""
import torch
import torchsde
import random
from tqdm.auto import trange
__all__ = ['GaussianDiffusion']
def _i(tensor, t, x):
"""
Index tensor using t and format the output according to x.
"""
shape = (x.size(0), ) + (1, ) * (x.ndim - 1)
return tensor[t.to(tensor.device)].view(shape).to(x.device)
class BatchedBrownianTree:
"""
A wrapper around torchsde.BrownianTree that enables batches of entropy.
"""
def __init__(self, x, t0, t1, seed=None, **kwargs):
t0, t1, self.sign = self.sort(t0, t1)
w0 = kwargs.get('w0', torch.zeros_like(x))
if seed is None:
seed = torch.randint(0, 2 ** 63 - 1, []).item()
self.batched = True
try:
assert len(seed) == x.shape[0]
w0 = w0[0]
except TypeError:
seed = [seed]
self.batched = False
self.trees = [torchsde.BrownianTree(
t0, w0, t1, entropy=s, **kwargs
) for s in seed]
@staticmethod
def sort(a, b):
return (a, b, 1) if a < b else (b, a, -1)
def __call__(self, t0, t1):
t0, t1, sign = self.sort(t0, t1)
w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
return w if self.batched else w[0]
class BrownianTreeNoiseSampler:
"""
A noise sampler backed by a torchsde.BrownianTree.
Args:
x (Tensor): The tensor whose shape, device and dtype to use to generate
random samples.
sigma_min (float): The low end of the valid interval.
sigma_max (float): The high end of the valid interval.
seed (int or List[int]): The random seed. If a list of seeds is
supplied instead of a single integer, then the noise sampler will
use one BrownianTree per batch item, each with its own seed.
transform (callable): A function that maps sigma to the sampler's
internal timestep.
"""
def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
self.transform = transform
t0 = self.transform(torch.as_tensor(sigma_min))
t1 = self.transform(torch.as_tensor(sigma_max))
self.tree = BatchedBrownianTree(x, t0, t1, seed)
def __call__(self, sigma, sigma_next):
t0 = self.transform(torch.as_tensor(sigma))
t1 = self.transform(torch.as_tensor(sigma_next))
return self.tree(t0, t1) / (t1 - t0).abs().sqrt()
def get_scalings(sigma):
c_out = -sigma
c_in = 1 / (sigma ** 2 + 1. ** 2) ** 0.5
return c_out, c_in
@torch.no_grad()
def sample_dpmpp_2m_sde(
noise,
model,
sigmas,
eta=1.,
s_noise=1.,
solver_type='midpoint',
show_progress=True
):
"""
DPM-Solver++ (2M) SDE.
"""
assert solver_type in {'heun', 'midpoint'}
x = noise * sigmas[0]
sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas[sigmas < float('inf')].max()
noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max)
old_denoised = None
h_last = None
for i in trange(len(sigmas) - 1, disable=not show_progress):
if sigmas[i] == float('inf'):
# Euler method
denoised = model(noise, sigmas[i])
x = denoised + sigmas[i + 1] * noise
else:
_, c_in = get_scalings(sigmas[i])
denoised = model(x * c_in, sigmas[i])
if sigmas[i + 1] == 0:
# Denoising step
x = denoised
else:
# DPM-Solver++(2M) SDE
t, s = -sigmas[i].log(), -sigmas[i + 1].log()
h = s - t
eta_h = eta * h
x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + \
(-h - eta_h).expm1().neg() * denoised
if old_denoised is not None:
r = h_last / h
if solver_type == 'heun':
x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * \
(1 / r) * (denoised - old_denoised)
elif solver_type == 'midpoint':
x = x + 0.5 * (-h - eta_h).expm1().neg() * \
(1 / r) * (denoised - old_denoised)
x = x + noise_sampler(
sigmas[i],
sigmas[i + 1]
) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise
old_denoised = denoised
h_last = h
return x
class GaussianDiffusion(object):
def __init__(self, sigmas, prediction_type='eps'):
assert prediction_type in {'x0', 'eps', 'v'}
self.sigmas = sigmas.float() # noise coefficients
self.alphas = torch.sqrt(1 - sigmas ** 2).float() # signal coefficients
self.num_timesteps = len(sigmas)
self.prediction_type = prediction_type
def diffuse(self, x0, t, noise=None):
"""
Add Gaussian noise to signal x0 according to:
q(x_t | x_0) = N(x_t | alpha_t x_0, sigma_t^2 I).
"""
noise = torch.randn_like(x0) if noise is None else noise
xt = _i(self.alphas, t, x0) * x0 + _i(self.sigmas, t, x0) * noise
return xt
def denoise(
self,
xt,
t,
s,
model,
model_kwargs={},
guide_scale=None,
guide_rescale=None,
clamp=None,
percentile=None
):
"""
Apply one step of denoising from the posterior distribution q(x_s | x_t, x0).
Since x0 is not available, estimate the denoising results using the learned
distribution p(x_s | x_t, \hat{x}_0 == f(x_t)).
"""
s = t - 1 if s is None else s
# hyperparams
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
alphas_s = _i(self.alphas, s.clamp(0), xt)
alphas_s[s < 0] = 1.
sigmas_s = torch.sqrt(1 - alphas_s ** 2)
# precompute variables
betas = 1 - (alphas / alphas_s) ** 2
coef1 = betas * alphas_s / sigmas ** 2
coef2 = (alphas * sigmas_s ** 2) / (alphas_s * sigmas ** 2)
var = betas * (sigmas_s / sigmas) ** 2
log_var = torch.log(var).clamp_(-20, 20)
# prediction
if guide_scale is None:
assert isinstance(model_kwargs, dict)
out = model(xt, t=t, **model_kwargs)
else:
# classifier-free guidance (arXiv:2207.12598)
# model_kwargs[0]: conditional kwargs
# model_kwargs[1]: non-conditional kwargs
assert isinstance(model_kwargs, list) and len(model_kwargs) == 2
y_out = model(xt, t=t, **model_kwargs[0])
if guide_scale == 1.:
out = y_out
else:
u_out = model(xt, t=t, **model_kwargs[1])
out = u_out + guide_scale * (y_out - u_out)
# rescale the output according to arXiv:2305.08891
if guide_rescale is not None:
assert guide_rescale >= 0 and guide_rescale <= 1
ratio = (y_out.flatten(1).std(dim=1) / (
out.flatten(1).std(dim=1) + 1e-12
)).view((-1, ) + (1, ) * (y_out.ndim - 1))
out *= guide_rescale * ratio + (1 - guide_rescale) * 1.0
# compute x0
if self.prediction_type == 'x0':
x0 = out
elif self.prediction_type == 'eps':
x0 = (xt - sigmas * out) / alphas
elif self.prediction_type == 'v':
x0 = alphas * xt - sigmas * out
else:
raise NotImplementedError(
f'prediction_type {self.prediction_type} not implemented'
)
# restrict the range of x0
if percentile is not None:
# NOTE: percentile should only be used when data is within range [-1, 1]
assert percentile > 0 and percentile <= 1
s = torch.quantile(x0.flatten(1).abs(), percentile, dim=1)
s = s.clamp_(1.0).view((-1, ) + (1, ) * (xt.ndim - 1))
x0 = torch.min(s, torch.max(-s, x0)) / s
elif clamp is not None:
x0 = x0.clamp(-clamp, clamp)
# recompute eps using the restricted x0
eps = (xt - alphas * x0) / sigmas
# compute mu (mean of posterior distribution) using the restricted x0
mu = coef1 * x0 + coef2 * xt
return mu, var, log_var, x0, eps
@torch.no_grad()
def sample(
self,
noise,
model,
model_kwargs={},
condition_fn=None,
guide_scale=None,
guide_rescale=None,
clamp=None,
percentile=None,
solver='euler_a',
steps=20,
t_max=None,
t_min=None,
discretization=None,
discard_penultimate_step=None,
return_intermediate=None,
show_progress=False,
seed=-1,
**kwargs
):
# sanity check
assert isinstance(steps, (int, torch.LongTensor))
assert t_max is None or (t_max > 0 and t_max <= self.num_timesteps - 1)
assert t_min is None or (t_min >= 0 and t_min < self.num_timesteps - 1)
assert discretization in (None, 'leading', 'linspace', 'trailing')
assert discard_penultimate_step in (None, True, False)
assert return_intermediate in (None, 'x0', 'xt')
# function of diffusion solver
solver_fn = {
# 'heun': sample_heun,
'dpmpp_2m_sde': sample_dpmpp_2m_sde
}[solver]
# options
schedule = 'karras' if 'karras' in solver else None
discretization = discretization or 'linspace'
seed = seed if seed >= 0 else random.randint(0, 2 ** 31)
if isinstance(steps, torch.LongTensor):
discard_penultimate_step = False
if discard_penultimate_step is None:
discard_penultimate_step = True if solver in (
'dpm2',
'dpm2_ancestral',
'dpmpp_2m_sde',
'dpm2_karras',
'dpm2_ancestral_karras',
'dpmpp_2m_sde_karras'
) else False
# function for denoising xt to get x0
intermediates = []
def model_fn(xt, sigma):
# denoising
t = self._sigma_to_t(sigma).repeat(len(xt)).round().long()
x0 = self.denoise(
xt, t, None, model, model_kwargs, guide_scale, guide_rescale, clamp,
percentile
)[-2]
# collect intermediate outputs
if return_intermediate == 'xt':
intermediates.append(xt)
elif return_intermediate == 'x0':
intermediates.append(x0)
return x0
# get timesteps
if isinstance(steps, int):
steps += 1 if discard_penultimate_step else 0
t_max = self.num_timesteps - 1 if t_max is None else t_max
t_min = 0 if t_min is None else t_min
# discretize timesteps
if discretization == 'leading':
steps = torch.arange(
t_min, t_max + 1, (t_max - t_min + 1) / steps
).flip(0)
elif discretization == 'linspace':
steps = torch.linspace(t_max, t_min, steps)
elif discretization == 'trailing':
steps = torch.arange(t_max, t_min - 1, -((t_max - t_min + 1) / steps))
else:
raise NotImplementedError(
f'{discretization} discretization not implemented'
)
steps = steps.clamp_(t_min, t_max)
steps = torch.as_tensor(steps, dtype=torch.float32, device=noise.device)
# get sigmas
sigmas = self._t_to_sigma(steps)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
if schedule == 'karras':
if sigmas[0] == float('inf'):
sigmas = karras_schedule(
n=len(steps) - 1,
sigma_min=sigmas[sigmas > 0].min().item(),
sigma_max=sigmas[sigmas < float('inf')].max().item(),
rho=7.
).to(sigmas)
sigmas = torch.cat([
sigmas.new_tensor([float('inf')]), sigmas, sigmas.new_zeros([1])
])
else:
sigmas = karras_schedule(
n=len(steps),
sigma_min=sigmas[sigmas > 0].min().item(),
sigma_max=sigmas.max().item(),
rho=7.
).to(sigmas)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
if discard_penultimate_step:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
# sampling
x0 = solver_fn(
noise,
model_fn,
sigmas,
show_progress=show_progress,
**kwargs
)
return (x0, intermediates) if return_intermediate is not None else x0
@torch.no_grad()
def ddim_reverse_sample(
self,
xt,
t,
model,
model_kwargs={},
clamp=None,
percentile=None,
guide_scale=None,
guide_rescale=None,
ddim_timesteps=20,
reverse_steps=600
):
r"""Sample from p(x_{t+1} | x_t) using DDIM reverse ODE (deterministic).
"""
stride = reverse_steps // ddim_timesteps
# predict distribution of p(x_{t-1} | x_t)
_, _, _, x0, eps = self.denoise(
xt, t, None, model, model_kwargs, guide_scale, guide_rescale, clamp,
percentile
)
# derive variables
s = (t + stride).clamp(0, reverse_steps-1)
# hyperparams
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
alphas_s = _i(self.alphas, s.clamp(0), xt)
alphas_s[s < 0] = 1.
sigmas_s = torch.sqrt(1 - alphas_s ** 2)
# reverse sample
mu = alphas_s * x0 + sigmas_s * eps
return mu, x0
@torch.no_grad()
def ddim_reverse_sample_loop(
self,
x0,
model,
model_kwargs={},
clamp=None,
percentile=None,
guide_scale=None,
guide_rescale=None,
ddim_timesteps=20,
reverse_steps=600
):
# prepare input
b = x0.size(0)
xt = x0
# reconstruction steps
steps = torch.arange(0, reverse_steps, reverse_steps // ddim_timesteps)
for step in steps:
t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
xt, _ = self.ddim_reverse_sample(xt, t, model, model_kwargs, clamp, percentile, guide_scale, guide_rescale, ddim_timesteps, reverse_steps)
return xt
def _sigma_to_t(self, sigma):
if sigma == float('inf'):
t = torch.full_like(sigma, len(self.sigmas) - 1)
else:
log_sigmas = torch.sqrt(
self.sigmas ** 2 / (1 - self.sigmas ** 2)
).log().to(sigma)
log_sigma = sigma.log()
dists = log_sigma - log_sigmas[:, None]
low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(
max=log_sigmas.shape[0] - 2
)
high_idx = low_idx + 1
low, high = log_sigmas[low_idx], log_sigmas[high_idx]
w = (low - log_sigma) / (low - high)
w = w.clamp(0, 1)
t = (1 - w) * low_idx + w * high_idx
t = t.view(sigma.shape)
if t.ndim == 0:
t = t.unsqueeze(0)
return t
def _t_to_sigma(self, t):
t = t.float()
low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac()
log_sigmas = torch.sqrt(self.sigmas ** 2 / (1 - self.sigmas ** 2)).log().to(t)
log_sigma = (1 - w) * log_sigmas[low_idx] + w * log_sigmas[high_idx]
log_sigma[torch.isnan(log_sigma) | torch.isinf(log_sigma)] = float('inf')
return log_sigma.exp()
def prev_step(self, model_out, t, xt, inference_steps=50):
prev_t = t - self.num_timesteps // inference_steps
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
alphas_prev = _i(self.alphas, prev_t.clamp(0), xt)
alphas_prev[prev_t < 0] = 1.
sigmas_prev = torch.sqrt(1 - alphas_prev ** 2)
x0 = alphas * xt - sigmas * model_out
eps = (xt - alphas * x0) / sigmas
prev_sample = alphas_prev * x0 + sigmas_prev * eps
return prev_sample
def next_step(self, model_out, t, xt, inference_steps=50):
t, next_t = min(t - self.num_timesteps // inference_steps, 999), t
sigmas = _i(self.sigmas, t, xt)
alphas = _i(self.alphas, t, xt)
alphas_next = _i(self.alphas, next_t.clamp(0), xt)
alphas_next[next_t < 0] = 1.
sigmas_next = torch.sqrt(1 - alphas_next ** 2)
x0 = alphas * xt - sigmas * model_out
eps = (xt - alphas * x0) / sigmas
next_sample = alphas_next * x0 + sigmas_next * eps
return next_sample
def get_noise_pred_single(self, xt, t, model, model_kwargs):
assert isinstance(model_kwargs, dict)
out = model(xt, t=t, **model_kwargs)
return out
|