File size: 17,584 Bytes
2ba4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
"""
GaussianDiffusion wraps operators for denoising diffusion models, including the
diffusion and denoising processes, as well as the loss evaluation.
"""
import torch
import torchsde
import random
from tqdm.auto import trange


__all__ = ['GaussianDiffusion']


def _i(tensor, t, x):
    """
    Index tensor using t and format the output according to x.
    """
    shape = (x.size(0), ) + (1, ) * (x.ndim - 1)
    return tensor[t.to(tensor.device)].view(shape).to(x.device)


class BatchedBrownianTree:
    """
    A wrapper around torchsde.BrownianTree that enables batches of entropy.
    """
    def __init__(self, x, t0, t1, seed=None, **kwargs):
        t0, t1, self.sign = self.sort(t0, t1)
        w0 = kwargs.get('w0', torch.zeros_like(x))
        if seed is None:
            seed = torch.randint(0, 2 ** 63 - 1, []).item()
        self.batched = True
        try:
            assert len(seed) == x.shape[0]
            w0 = w0[0]
        except TypeError:
            seed = [seed]
            self.batched = False
        self.trees = [torchsde.BrownianTree(
            t0, w0, t1, entropy=s, **kwargs
        ) for s in seed]
    
    @staticmethod
    def sort(a, b):
        return (a, b, 1) if a < b else (b, a, -1)

    def __call__(self, t0, t1):
        t0, t1, sign = self.sort(t0, t1)
        w = torch.stack([tree(t0, t1) for tree in self.trees]) * (self.sign * sign)
        return w if self.batched else w[0]


class BrownianTreeNoiseSampler:
    """
    A noise sampler backed by a torchsde.BrownianTree.

    Args:
        x (Tensor): The tensor whose shape, device and dtype to use to generate
            random samples.
        sigma_min (float): The low end of the valid interval.
        sigma_max (float): The high end of the valid interval.
        seed (int or List[int]): The random seed. If a list of seeds is
            supplied instead of a single integer, then the noise sampler will
            use one BrownianTree per batch item, each with its own seed.
        transform (callable): A function that maps sigma to the sampler's
            internal timestep.
    """
    def __init__(self, x, sigma_min, sigma_max, seed=None, transform=lambda x: x):
        self.transform = transform
        t0 = self.transform(torch.as_tensor(sigma_min))
        t1 = self.transform(torch.as_tensor(sigma_max))
        self.tree = BatchedBrownianTree(x, t0, t1, seed)
    
    def __call__(self, sigma, sigma_next):
        t0 = self.transform(torch.as_tensor(sigma))
        t1 = self.transform(torch.as_tensor(sigma_next))
        return self.tree(t0, t1) / (t1 - t0).abs().sqrt()


def get_scalings(sigma):
    c_out = -sigma
    c_in = 1 / (sigma ** 2 + 1. ** 2) ** 0.5
    return c_out, c_in


@torch.no_grad()
def sample_dpmpp_2m_sde(
    noise,
    model,
    sigmas,
    eta=1.,
    s_noise=1.,
    solver_type='midpoint',
    show_progress=True
):
    """
    DPM-Solver++ (2M) SDE.
    """
    assert solver_type in {'heun', 'midpoint'}

    x = noise * sigmas[0]
    sigma_min, sigma_max = sigmas[sigmas > 0].min(), sigmas[sigmas < float('inf')].max()
    noise_sampler = BrownianTreeNoiseSampler(x, sigma_min, sigma_max)
    old_denoised = None
    h_last = None

    for i in trange(len(sigmas) - 1, disable=not show_progress):
        if sigmas[i] == float('inf'):
            # Euler method
            denoised = model(noise, sigmas[i])
            x = denoised + sigmas[i + 1] * noise
        else:
            _, c_in = get_scalings(sigmas[i])
            denoised = model(x * c_in, sigmas[i])
            if sigmas[i + 1] == 0:
                # Denoising step
                x = denoised
            else:
                # DPM-Solver++(2M) SDE
                t, s = -sigmas[i].log(), -sigmas[i + 1].log()
                h = s - t
                eta_h = eta * h

                x = sigmas[i + 1] / sigmas[i] * (-eta_h).exp() * x + \
                    (-h - eta_h).expm1().neg() * denoised

                if old_denoised is not None:
                    r = h_last / h
                    if solver_type == 'heun':
                        x = x + ((-h - eta_h).expm1().neg() / (-h - eta_h) + 1) * \
                            (1 / r) * (denoised - old_denoised)
                    elif solver_type == 'midpoint':
                        x = x + 0.5 * (-h - eta_h).expm1().neg() * \
                            (1 / r) * (denoised - old_denoised)

                x = x + noise_sampler(
                    sigmas[i],
                    sigmas[i + 1]
                ) * sigmas[i + 1] * (-2 * eta_h).expm1().neg().sqrt() * s_noise

            old_denoised = denoised
            h_last = h
    return x


class GaussianDiffusion(object):

    def __init__(self, sigmas, prediction_type='eps'):
        assert prediction_type in {'x0', 'eps', 'v'}
        self.sigmas = sigmas.float()                        # noise coefficients
        self.alphas = torch.sqrt(1 - sigmas ** 2).float()   # signal coefficients
        self.num_timesteps = len(sigmas)
        self.prediction_type = prediction_type

    def diffuse(self, x0, t, noise=None):
        """
        Add Gaussian noise to signal x0 according to:
        q(x_t | x_0) = N(x_t | alpha_t x_0, sigma_t^2 I).
        """
        noise = torch.randn_like(x0) if noise is None else noise
        xt = _i(self.alphas, t, x0) * x0 + _i(self.sigmas, t, x0) * noise
        return xt
    
    def denoise(
        self,
        xt,
        t,
        s,
        model,
        model_kwargs={},
        guide_scale=None,
        guide_rescale=None,
        clamp=None,
        percentile=None
    ):
        """
        Apply one step of denoising from the posterior distribution q(x_s | x_t, x0).
        Since x0 is not available, estimate the denoising results using the learned
        distribution p(x_s | x_t, \hat{x}_0 == f(x_t)).
        """
        s = t - 1 if s is None else s

        # hyperparams
        sigmas = _i(self.sigmas, t, xt)
        alphas = _i(self.alphas, t, xt)
        alphas_s = _i(self.alphas, s.clamp(0), xt)
        alphas_s[s < 0] = 1.
        sigmas_s = torch.sqrt(1 - alphas_s ** 2)

        # precompute variables
        betas = 1 - (alphas / alphas_s) ** 2
        coef1 = betas * alphas_s / sigmas ** 2
        coef2 = (alphas * sigmas_s ** 2) / (alphas_s * sigmas ** 2)
        var = betas * (sigmas_s / sigmas) ** 2
        log_var = torch.log(var).clamp_(-20, 20)

        # prediction
        if guide_scale is None:
            assert isinstance(model_kwargs, dict)
            out = model(xt, t=t, **model_kwargs)
        else:
            # classifier-free guidance (arXiv:2207.12598)
            # model_kwargs[0]: conditional kwargs
            # model_kwargs[1]: non-conditional kwargs
            assert isinstance(model_kwargs, list) and len(model_kwargs) == 2
            y_out = model(xt, t=t, **model_kwargs[0])
            if guide_scale == 1.:
                out = y_out
            else:
                u_out = model(xt, t=t, **model_kwargs[1])
                out = u_out + guide_scale * (y_out - u_out)

                # rescale the output according to arXiv:2305.08891
                if guide_rescale is not None:
                    assert guide_rescale >= 0 and guide_rescale <= 1
                    ratio = (y_out.flatten(1).std(dim=1) / (
                        out.flatten(1).std(dim=1) + 1e-12
                    )).view((-1, ) + (1, ) * (y_out.ndim - 1))
                    out *= guide_rescale * ratio + (1 - guide_rescale) * 1.0
        
        # compute x0
        if self.prediction_type == 'x0':
            x0 = out
        elif self.prediction_type == 'eps':
            x0 = (xt - sigmas * out) / alphas
        elif self.prediction_type == 'v':
            x0 = alphas * xt - sigmas * out
        else:
            raise NotImplementedError(
                f'prediction_type {self.prediction_type} not implemented'
            )
        
        # restrict the range of x0
        if percentile is not None:
            # NOTE: percentile should only be used when data is within range [-1, 1]
            assert percentile > 0 and percentile <= 1
            s = torch.quantile(x0.flatten(1).abs(), percentile, dim=1)
            s = s.clamp_(1.0).view((-1, ) + (1, ) * (xt.ndim - 1))
            x0 = torch.min(s, torch.max(-s, x0)) / s
        elif clamp is not None:
            x0 = x0.clamp(-clamp, clamp)
        
        # recompute eps using the restricted x0
        eps = (xt - alphas * x0) / sigmas

        # compute mu (mean of posterior distribution) using the restricted x0
        mu = coef1 * x0 + coef2 * xt
        return mu, var, log_var, x0, eps

    @torch.no_grad()
    def sample(
        self,
        noise,
        model,
        model_kwargs={},
        condition_fn=None,
        guide_scale=None,
        guide_rescale=None,
        clamp=None,
        percentile=None,
        solver='euler_a',
        steps=20,
        t_max=None,
        t_min=None,
        discretization=None,
        discard_penultimate_step=None,
        return_intermediate=None,
        show_progress=False,
        seed=-1,
        **kwargs
    ):
        # sanity check
        assert isinstance(steps, (int, torch.LongTensor))
        assert t_max is None or (t_max > 0 and t_max <= self.num_timesteps - 1)
        assert t_min is None or (t_min >= 0 and t_min < self.num_timesteps - 1)
        assert discretization in (None, 'leading', 'linspace', 'trailing')
        assert discard_penultimate_step in (None, True, False)
        assert return_intermediate in (None, 'x0', 'xt')

        # function of diffusion solver
        solver_fn = {
            # 'heun': sample_heun,
            'dpmpp_2m_sde': sample_dpmpp_2m_sde
        }[solver]

        # options
        schedule = 'karras' if 'karras' in solver else None
        discretization = discretization or 'linspace'
        seed = seed if seed >= 0 else random.randint(0, 2 ** 31)
        if isinstance(steps, torch.LongTensor):
            discard_penultimate_step = False
        if discard_penultimate_step is None:
            discard_penultimate_step = True if solver in (
                'dpm2',
                'dpm2_ancestral',
                'dpmpp_2m_sde',
                'dpm2_karras',
                'dpm2_ancestral_karras',
                'dpmpp_2m_sde_karras'
            ) else False
        
        # function for denoising xt to get x0
        intermediates = []
        def model_fn(xt, sigma):
            # denoising
            t = self._sigma_to_t(sigma).repeat(len(xt)).round().long()
            x0 = self.denoise(
                xt, t, None, model, model_kwargs, guide_scale, guide_rescale, clamp,
                percentile
            )[-2]

            # collect intermediate outputs
            if return_intermediate == 'xt':
                intermediates.append(xt)
            elif return_intermediate == 'x0':
                intermediates.append(x0)
            return x0
        
        # get timesteps
        if isinstance(steps, int):
            steps += 1 if discard_penultimate_step else 0
            t_max = self.num_timesteps - 1 if t_max is None else t_max
            t_min = 0 if t_min is None else t_min

            # discretize timesteps
            if discretization == 'leading':
                steps = torch.arange(
                    t_min, t_max + 1, (t_max - t_min + 1) / steps
                ).flip(0)
            elif discretization == 'linspace':
                steps = torch.linspace(t_max, t_min, steps)
            elif discretization == 'trailing':
                steps = torch.arange(t_max, t_min - 1, -((t_max - t_min + 1) / steps))
            else:
                raise NotImplementedError(
                    f'{discretization} discretization not implemented'
                )
            steps = steps.clamp_(t_min, t_max)
        steps = torch.as_tensor(steps, dtype=torch.float32, device=noise.device)

        # get sigmas
        sigmas = self._t_to_sigma(steps)
        sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        if schedule == 'karras':
            if sigmas[0] == float('inf'):
                sigmas = karras_schedule(
                    n=len(steps) - 1,
                    sigma_min=sigmas[sigmas > 0].min().item(),
                    sigma_max=sigmas[sigmas < float('inf')].max().item(),
                    rho=7.
                ).to(sigmas)
                sigmas = torch.cat([
                    sigmas.new_tensor([float('inf')]), sigmas, sigmas.new_zeros([1])
                ])
            else:
                sigmas = karras_schedule(
                    n=len(steps),
                    sigma_min=sigmas[sigmas > 0].min().item(),
                    sigma_max=sigmas.max().item(),
                    rho=7.
                ).to(sigmas)
                sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
        if discard_penultimate_step:
            sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
        
        # sampling
        x0 = solver_fn(
            noise,
            model_fn,
            sigmas,
            show_progress=show_progress,
            **kwargs
        )
        return (x0, intermediates) if return_intermediate is not None else x0
    
    @torch.no_grad()
    def ddim_reverse_sample(
        self,
        xt,
        t,
        model,
        model_kwargs={},
        clamp=None,
        percentile=None,
        guide_scale=None,
        guide_rescale=None,
        ddim_timesteps=20,
        reverse_steps=600
        ):
        r"""Sample from p(x_{t+1} | x_t) using DDIM reverse ODE (deterministic).
        """
        stride = reverse_steps // ddim_timesteps

        # predict distribution of p(x_{t-1} | x_t)
        _, _, _, x0, eps = self.denoise(
                xt, t, None, model, model_kwargs, guide_scale, guide_rescale, clamp,
                percentile
            )
        # derive variables
        s = (t + stride).clamp(0, reverse_steps-1)
        # hyperparams
        sigmas = _i(self.sigmas, t, xt)
        alphas = _i(self.alphas, t, xt)
        alphas_s = _i(self.alphas, s.clamp(0), xt)
        alphas_s[s < 0] = 1.
        sigmas_s = torch.sqrt(1 - alphas_s ** 2)
        
        # reverse sample
        mu = alphas_s * x0 + sigmas_s * eps
        return mu, x0
    
    @torch.no_grad()
    def ddim_reverse_sample_loop(
        self,
        x0,
        model,
        model_kwargs={},
        clamp=None,
        percentile=None,
        guide_scale=None,
        guide_rescale=None,
        ddim_timesteps=20,
        reverse_steps=600
        ):
        # prepare input
        b = x0.size(0)
        xt = x0

        # reconstruction steps
        steps = torch.arange(0, reverse_steps, reverse_steps // ddim_timesteps)
        for step in steps:
            t = torch.full((b, ), step, dtype=torch.long, device=xt.device)
            xt, _ = self.ddim_reverse_sample(xt, t, model, model_kwargs, clamp, percentile, guide_scale, guide_rescale, ddim_timesteps, reverse_steps)
        return xt
    
    def _sigma_to_t(self, sigma):
        if sigma == float('inf'):
            t = torch.full_like(sigma, len(self.sigmas) - 1)
        else:
            log_sigmas = torch.sqrt(
                self.sigmas ** 2 / (1 - self.sigmas ** 2)
            ).log().to(sigma)
            log_sigma = sigma.log()
            dists = log_sigma - log_sigmas[:, None]
            low_idx = dists.ge(0).cumsum(dim=0).argmax(dim=0).clamp(
                max=log_sigmas.shape[0] - 2
            )
            high_idx = low_idx + 1
            low, high = log_sigmas[low_idx], log_sigmas[high_idx]
            w = (low - log_sigma) / (low - high)
            w = w.clamp(0, 1)
            t = (1 - w) * low_idx + w * high_idx
            t = t.view(sigma.shape)
        if t.ndim == 0:
            t = t.unsqueeze(0)
        return t

    def _t_to_sigma(self, t):
        t = t.float()
        low_idx, high_idx, w = t.floor().long(), t.ceil().long(), t.frac()
        log_sigmas = torch.sqrt(self.sigmas ** 2 / (1 - self.sigmas ** 2)).log().to(t)
        log_sigma = (1 - w) * log_sigmas[low_idx] + w * log_sigmas[high_idx]
        log_sigma[torch.isnan(log_sigma) | torch.isinf(log_sigma)] = float('inf')
        return log_sigma.exp()
    
    def prev_step(self, model_out, t, xt, inference_steps=50):
        prev_t = t - self.num_timesteps // inference_steps

        sigmas = _i(self.sigmas, t, xt)
        alphas = _i(self.alphas, t, xt)
        alphas_prev = _i(self.alphas, prev_t.clamp(0), xt)
        alphas_prev[prev_t < 0] = 1.
        sigmas_prev = torch.sqrt(1 - alphas_prev ** 2)
        
        x0 = alphas * xt - sigmas * model_out
        eps = (xt - alphas * x0) / sigmas
        prev_sample = alphas_prev * x0 + sigmas_prev * eps
        return prev_sample
    
    def next_step(self, model_out, t, xt, inference_steps=50):
        t, next_t = min(t - self.num_timesteps // inference_steps, 999), t

        sigmas = _i(self.sigmas, t, xt)
        alphas = _i(self.alphas, t, xt)
        alphas_next = _i(self.alphas, next_t.clamp(0), xt)
        alphas_next[next_t < 0] = 1.
        sigmas_next = torch.sqrt(1 - alphas_next ** 2)
        
        x0 = alphas * xt - sigmas * model_out
        eps = (xt - alphas * x0) / sigmas
        next_sample = alphas_next * x0 + sigmas_next * eps
        return next_sample
    
    def get_noise_pred_single(self, xt, t, model, model_kwargs):
        assert isinstance(model_kwargs, dict)
        out = model(xt, t=t, **model_kwargs)
        return out