mbarnig commited on
Commit
443c139
·
verified ·
1 Parent(s): 5d9c9c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -70
app.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  import os
2
  import gradio as gr
3
  import numpy as np
@@ -19,7 +21,6 @@ pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_d
19
  torch.cuda.empty_cache()
20
 
21
  MAX_SEED = np.iinfo(np.int32).max
22
- MAX_IMAGE_SIZE = 2048
23
 
24
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
25
 
@@ -57,27 +58,20 @@ def infer(name, pet, background, style, seed=42, randomize_seed=False, width=102
57
  else:
58
  prompt = place + "holding a signal that says " + name + "in a 3D style"
59
 
60
- if randomize_seed:
61
- seed = random.randint(0, MAX_SEED)
62
  generator = torch.Generator().manual_seed(seed)
63
 
64
  for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
65
  prompt=prompt,
66
- guidance_scale=guidance_scale,
67
- num_inference_steps=num_inference_steps,
68
- width=width,
69
- height=height,
70
  generator=generator,
71
  output_type="pil",
72
  good_vae=good_vae,
73
  ):
74
  yield img, seed
75
-
76
- examples = [
77
- "cat",
78
- "dog",
79
- "bunny"
80
- ]
81
 
82
  css="""
83
  #col-container {
@@ -127,67 +121,11 @@ with gr.Blocks(css=css) as demo:
127
  )
128
 
129
  result = gr.Image(label="Result", show_label=False)
130
-
131
- with gr.Accordion("Advanced Settings", open=False):
132
-
133
- seed = gr.Slider(
134
- label="Seed",
135
- minimum=0,
136
- maximum=MAX_SEED,
137
- step=1,
138
- value=0,
139
- )
140
-
141
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
142
-
143
- with gr.Row():
144
-
145
- width = gr.Slider(
146
- label="Width",
147
- minimum=256,
148
- maximum=MAX_IMAGE_SIZE,
149
- step=32,
150
- value=1024,
151
- )
152
-
153
- height = gr.Slider(
154
- label="Height",
155
- minimum=256,
156
- maximum=MAX_IMAGE_SIZE,
157
- step=32,
158
- value=1024,
159
- )
160
-
161
- with gr.Row():
162
-
163
- guidance_scale = gr.Slider(
164
- label="Guidance Scale",
165
- minimum=1,
166
- maximum=15,
167
- step=0.1,
168
- value=3.5,
169
- )
170
-
171
- num_inference_steps = gr.Slider(
172
- label="Number of inference steps",
173
- minimum=1,
174
- maximum=50,
175
- step=1,
176
- value=28,
177
- )
178
-
179
- gr.Examples(
180
- examples = examples,
181
- fn = infer,
182
- inputs = [prompt],
183
- outputs = [result, seed],
184
- cache_examples="lazy"
185
- )
186
 
187
  gr.on(
188
  triggers=[run_button.click, prompt.submit],
189
  fn = infer,
190
- inputs = [prompt, pet, background, style, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
191
  outputs = [result, seed]
192
  )
193
 
 
1
+ # credits : https://huggingface.co/spaces/black-forest-labs/FLUX.1-dev
2
+
3
  import os
4
  import gradio as gr
5
  import numpy as np
 
21
  torch.cuda.empty_cache()
22
 
23
  MAX_SEED = np.iinfo(np.int32).max
 
24
 
25
  pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
26
 
 
58
  else:
59
  prompt = place + "holding a signal that says " + name + "in a 3D style"
60
 
61
+ seed = random.randint(0, MAX_SEED)
 
62
  generator = torch.Generator().manual_seed(seed)
63
 
64
  for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
65
  prompt=prompt,
66
+ guidance_scale=3,5,
67
+ num_inference_steps=28,
68
+ width=1024,
69
+ height=1024,
70
  generator=generator,
71
  output_type="pil",
72
  good_vae=good_vae,
73
  ):
74
  yield img, seed
 
 
 
 
 
 
75
 
76
  css="""
77
  #col-container {
 
121
  )
122
 
123
  result = gr.Image(label="Result", show_label=False)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
124
 
125
  gr.on(
126
  triggers=[run_button.click, prompt.submit],
127
  fn = infer,
128
+ inputs = [prompt, pet, background, style],
129
  outputs = [result, seed]
130
  )
131