Spaces:
Runtime error
Runtime error
starting refactor
Browse files
app.py
CHANGED
@@ -1,18 +1,21 @@
|
|
1 |
import streamlit as st
|
2 |
import transformers as tf
|
3 |
|
|
|
4 |
@st.experimental_singleton(show_spinner=False)
|
5 |
def load_model(username, prefix, model_name):
|
6 |
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}')
|
7 |
return p
|
8 |
|
|
|
9 |
USERNAME = 'maxspad'
|
10 |
PREFIX = 'nlp-qual'
|
11 |
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
|
12 |
n_models = float(len(models_to_load))
|
13 |
-
|
14 |
models = {}
|
15 |
|
|
|
|
|
16 |
lc_placeholder = st.empty()
|
17 |
loader_container = lc_placeholder.container()
|
18 |
loader_container.caption('Loading models... please wait...')
|
@@ -22,13 +25,13 @@ for i, mn in enumerate(models_to_load):
|
|
22 |
models[mn] = load_model(USERNAME, PREFIX, mn)
|
23 |
lc_placeholder.empty()
|
24 |
|
25 |
-
|
26 |
|
27 |
denoms = ['5','3']
|
28 |
for mn in models_to_load:
|
29 |
st.header(mn)
|
30 |
cols = st.columns(2)
|
31 |
-
res = models[mn](
|
32 |
|
33 |
if mn == 'qual':
|
34 |
cols[0].metric('Score', f"{res['label'].split('_')[1]}/5")
|
|
|
1 |
import streamlit as st
|
2 |
import transformers as tf
|
3 |
|
4 |
+
# Function to load and cache models
|
5 |
@st.experimental_singleton(show_spinner=False)
|
6 |
def load_model(username, prefix, model_name):
|
7 |
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}')
|
8 |
return p
|
9 |
|
10 |
+
# Specify which models to load
|
11 |
USERNAME = 'maxspad'
|
12 |
PREFIX = 'nlp-qual'
|
13 |
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
|
14 |
n_models = float(len(models_to_load))
|
|
|
15 |
models = {}
|
16 |
|
17 |
+
# Show a progress bar while models are downloading,
|
18 |
+
# then hide it when done
|
19 |
lc_placeholder = st.empty()
|
20 |
loader_container = lc_placeholder.container()
|
21 |
loader_container.caption('Loading models... please wait...')
|
|
|
25 |
models[mn] = load_model(USERNAME, PREFIX, mn)
|
26 |
lc_placeholder.empty()
|
27 |
|
28 |
+
comment = st.text_area('Try a comment:')
|
29 |
|
30 |
denoms = ['5','3']
|
31 |
for mn in models_to_load:
|
32 |
st.header(mn)
|
33 |
cols = st.columns(2)
|
34 |
+
res = models[mn](comment)[0]
|
35 |
|
36 |
if mn == 'qual':
|
37 |
cols[0].metric('Score', f"{res['label'].split('_')[1]}/5")
|