nlp-qual-space / app.py
maxspad's picture
no qual score summing. truly random samples
e99bd97
raw
history blame
3.55 kB
import streamlit as st
import transformers as tf
import pandas as pd
from datetime import datetime
from plotly import graph_objects as go
from overview import NQDOverview
import torch
cuda_available = torch.cuda.is_available()
print(f"Is CUDA available: {cuda_available}")
if cuda_available:
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")
# Function to load and cache models
@st.experimental_singleton(show_spinner=False)
def load_model(username, prefix, model_name):
p = tf.pipeline('text-classification', f'{username}/{prefix}-{model_name}', return_all_scores=True)
return p
@st.experimental_singleton(show_spinner=False)
def load_pickle(f):
return pd.read_pickle(f)
def get_results(model, c):
res = model(c)[0]
scores = [r['score'] for r in res]
label = max(range(len(scores)), key=lambda i: scores[i])
# label = float(res['label'].split('_')[1])
# scores = res['score']
return {'label': label, 'scores': scores}
def run_models(model_names, models, c):
results = {}
for mn in model_names:
results[mn] = get_results(models[mn], c)
return results
st.title('Assess the *QuAL*ity of your feedback')
st.caption(
"""Medical education requires high-quality *written* feedback,
but evaluating these *supervisor narrative comments* is time-consuming.
The QuAL score has validity evidence for measuring the quality of short
comments in this context. We developed a NLP/ML-powered tool to
assess written comment quality via the QuAL score with high accuracy.
*Try it for yourself!*
""")
### Load models
# Specify which models to load
USERNAME = 'maxspad'
PREFIX = 'nlp-qual'
models_to_load = ['qual', 'q1', 'q2i', 'q3i']
n_models = float(len(models_to_load))
models = {}
# Show a progress bar while models are downloading,
# then hide it when done
lc_placeholder = st.empty()
loader_container = lc_placeholder.container()
loader_container.caption('Loading models... please wait...')
pbar = loader_container.progress(0.0)
for i, mn in enumerate(models_to_load):
pbar.progress((i+1.0) / n_models)
models[mn] = load_model(USERNAME, PREFIX, mn)
lc_placeholder.empty()
### Load example data
examples = load_pickle('test.pkl')
### Process input
ex = examples['comment'].sample(1, random_state=int(datetime.now().timestamp())).tolist()[0]
try:
ex = ex.strip().replace('_x000D_', '').replace('nan', 'blank')
except:
ex = 'blank'
if 'comment' not in st.session_state:
st.session_state['comment'] = ex
with st.form('comment_form'):
comment = st.text_area('Try a comment:', value=st.session_state['comment'])
left_col, right_col = st.columns([1,9], gap='medium')
submitted = left_col.form_submit_button('Submit')
trying_example = right_col.form_submit_button('Try an example!')
if submitted:
st.session_state['button_clicked'] = 'submit'
st.session_state['comment'] = comment
st.experimental_rerun()
elif trying_example:
st.session_state['button_clicked'] = 'example'
st.session_state['comment'] = ex
st.experimental_rerun()
results = run_models(models_to_load, models, st.session_state['comment'])
# Modify results to sum the QuAL score and to ignore Q3 if Q2 no suggestion
# if results['q2i']['label'] == 1:
# results['q3i']['label'] = 1 # can't have connection if no suggestion
# results['qual']['label'] = results['q1']['label'] + (not results['q2i']['label']) + (not results['q3i']['label'])
overview = NQDOverview(st, results)
overview.draw()