Spaces:
Sleeping
Sleeping
import streamlit as st | |
import altair as alt | |
import pandas as pd | |
from plots import altair_gauge | |
md_about_qual = ''' | |
The Quality of Assessment for Learning (QuAL) score measures three | |
components of high-quality feedback via three subscores: | |
1. A detailed description of the behavior observed (rated 0-3 depending on detail level) | |
2. A suggestion for improvement is present (rated no = 0, yes = 1) | |
3. Linkage between the behavior and the suggestion is present (rated no = 0, yes = 1) | |
The final QuAL score is the sum of these subscores, so it ranges from 0 (lowest quality) | |
to 5 (highest quality). | |
''' | |
class NQDFullReport(object): | |
def __init__(self, parent : st, results : dict): | |
self.p = parent | |
self.results = results | |
def draw(self): | |
st = self.p | |
st.header('Understand Your Score') | |
st.subheader('About the QuAL Score') | |
# with st.expander('About the QuAL Score', True): | |
st.markdown(md_about_qual) | |
st.subheader('Your Level of Detail') | |
gauge = altair_gauge(self.results['q1']['label'], 3, 'Level of Detail') | |
c1, c2 = st.columns(2) | |
with c1: | |
st.altair_chart(gauge, use_container_width=True) | |
with c2: | |
# st.write(self.results) | |
bar_df = (pd.DataFrame(self.results['q1']['scores']) | |
.reset_index() | |
.rename(columns={'index': 'Rating', 0: 'Score'})) | |
bar = alt.Chart(bar_df).mark_bar().encode( | |
x='Rating:O', y='Score', | |
color=alt.Color('Rating', scale=alt.Scale(scheme='redyellowgreen'), legend=None) | |
).properties(height=225, title='Prediction Scores') | |
st.altair_chart(bar, use_container_width=True) | |