Spaces:
Sleeping
Sleeping
File size: 1,518 Bytes
f58c9c5 1bb3e7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import altair as alt
import pandas as pd
import matplotlib.cm as cm
def altair_gauge(score, max_score, title):
source = pd.DataFrame({"category": [1,2], "value": [4,3], "tt": ['hello!',None]})
gauge_theta2 = -1 * 2 * 3.14 * 0.25 + 3.14 * score / float(max_score)
c = alt.layer(
alt.Chart(source).mark_arc(innerRadius=100, theta=0, thetaOffset=(-1*2*3.14*0.25), theta2=(-1*2*3.14*0.25 + 3.14), color='lightgray', tooltip=None),
alt.Chart(source).mark_arc(innerRadius=100, theta=0, thetaOffset=(-1*2*3.14*0.25), theta2=gauge_theta2, tooltip=f'{title}: {int(score)}', color=get_color(score, max_score)),
alt.Chart(source).mark_text(text='%.1d' % score, size=80, font='Calibri', dy=-30)
).properties(title=title)
return c
def get_color(score, max_score):
cmap = cm.get_cmap('RdYlGn')
color = cmap(score / float(max_score))
color = f'rgba({int(color[0]*256)}, {int(color[1]*256)}, {int(color[2]*256)}, {int(color[3]*256)})'
return color
def pred_bar_chart(scores, binary_labels=None):
bar_df = (pd.DataFrame(scores)
.reset_index()
.rename(columns={'index': 'Rating', 0: 'Score'}))
if binary_labels:
bar_df['Rating'].replace(binary_labels, inplace=True)
bar = alt.Chart(bar_df).mark_bar().encode(
x='Rating:O', y='Score',
color=alt.Color('Rating', scale=alt.Scale(scheme='redyellowgreen'), legend=None)
).properties(height=225, title='Prediction Scores')
bar.to_html()
return bar |