Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,61 +1,50 @@
|
|
1 |
-
# Define basic float and int types to patch sctypes without numpy
|
2 |
-
if not hasattr(__builtins__, 'sctypes'):
|
3 |
-
sctypes = {
|
4 |
-
"float": [float],
|
5 |
-
"int": [int],
|
6 |
-
"uint": [int] # Handle 'uint' as normal 'int' since it's not natively supported without numpy
|
7 |
-
}
|
8 |
-
|
9 |
-
# Now, import imgaug after patching
|
10 |
-
import imgaug.augmenters as iaa
|
11 |
-
import cv2
|
12 |
-
import matplotlib.pyplot as plt
|
13 |
import gradio as gr
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
image = np.array(image)
|
18 |
|
19 |
-
|
20 |
if flip:
|
21 |
-
|
22 |
-
image = flip_aug.augment_image(image)
|
23 |
-
|
24 |
-
rotate_aug = iaa.Affine(rotate=rotate) # Rotate by specified degrees
|
25 |
-
image = rotate_aug.augment_image(image)
|
26 |
-
|
27 |
-
brightness_aug = iaa.Multiply(brightness) # Adjust brightness
|
28 |
-
image = brightness_aug.augment_image(image)
|
29 |
-
|
30 |
-
noise_aug = iaa.AdditiveGaussianNoise(scale=(noise_scale)) # Gaussian noise
|
31 |
-
image = noise_aug.augment_image(image)
|
32 |
-
|
33 |
-
elastic_aug = iaa.ElasticTransformation(alpha=elastic_alpha, sigma=elastic_sigma) # Elastic transformation
|
34 |
-
image = elastic_aug.augment_image(image)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
|
|
40 |
return augmented_image
|
41 |
|
42 |
-
# Gradio UI
|
43 |
-
inputs = [
|
44 |
-
gr.Image(type="pil"), # Image input
|
45 |
-
gr.Checkbox(label="Flip Image Horizontally"), # Flip input
|
46 |
-
gr.Slider(minimum=-180, maximum=180, step=1, value=0, label="Rotate Image (degrees)"), # Rotation input
|
47 |
-
gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=1.0, label="Adjust Brightness"), # Brightness input
|
48 |
-
gr.Slider(minimum=0, maximum=100, step=1, value=10, label="Gaussian Noise Scale"), # Noise input
|
49 |
-
gr.Slider(minimum=0, maximum=200, step=10, value=100, label="Elastic Transformation Alpha"), # Elastic Alpha input
|
50 |
-
gr.Slider(minimum=0.1, maximum=10.0, step=0.1, value=3.0, label="Elastic Transformation Sigma") # Elastic Sigma input
|
51 |
-
]
|
52 |
-
|
53 |
iface = gr.Interface(
|
54 |
-
fn=
|
55 |
-
inputs=
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
)
|
60 |
|
61 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import albumentations as A
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
|
6 |
+
# Function for image augmentation
|
7 |
+
def augment_image(image, flip=False, rotate=0, brightness=1.0, noise=0, elastic=False):
|
8 |
image = np.array(image)
|
9 |
|
10 |
+
aug_list = []
|
11 |
if flip:
|
12 |
+
aug_list.append(A.HorizontalFlip(p=1.0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
if rotate:
|
15 |
+
aug_list.append(A.Rotate(limit=rotate, p=1.0))
|
16 |
+
|
17 |
+
if brightness != 1.0:
|
18 |
+
aug_list.append(A.RandomBrightnessContrast(brightness_limit=(brightness-1, brightness-1), p=1.0))
|
19 |
+
|
20 |
+
if noise > 0:
|
21 |
+
aug_list.append(A.GaussNoise(var_limit=(noise, noise), p=1.0))
|
22 |
+
|
23 |
+
if elastic:
|
24 |
+
aug_list.append(A.ElasticTransform(alpha=1, sigma=50, alpha_affine=50, p=1.0))
|
25 |
+
|
26 |
+
aug = A.Compose(aug_list)
|
27 |
+
augmented = aug(image=image)
|
28 |
+
|
29 |
+
return augmented["image"]
|
30 |
|
31 |
+
# Gradio Interface
|
32 |
+
def image_augmentor_interface(image, flip, rotate, brightness, noise, elastic):
|
33 |
+
augmented_image = augment_image(image, flip, rotate, brightness, noise, elastic)
|
34 |
return augmented_image
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
iface = gr.Interface(
|
37 |
+
fn=image_augmentor_interface,
|
38 |
+
inputs=[
|
39 |
+
gr.Image(type="numpy"),
|
40 |
+
gr.Checkbox(label="Flip Horizontally"),
|
41 |
+
gr.Slider(0, 360, label="Rotate Degrees"),
|
42 |
+
gr.Slider(0.5, 1.5, step=0.1, label="Brightness Adjustment"),
|
43 |
+
gr.Slider(0, 100, step=1, label="Noise Scale"),
|
44 |
+
gr.Checkbox(label="Elastic Distortion")
|
45 |
+
],
|
46 |
+
outputs="image",
|
47 |
+
title="Image Augmentation with Gradio"
|
48 |
)
|
49 |
|
50 |
iface.launch()
|