File size: 2,366 Bytes
3861128
 
 
f12f03e
3861128
 
 
 
 
 
 
f12f03e
3861128
 
 
 
 
 
f12f03e
3861128
 
 
 
 
 
f12f03e
3861128
 
 
 
 
 
 
 
 
f12f03e
3861128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f12f03e
3861128
 
 
 
 
 
 
f12f03e
3861128
 
 
 
 
 
 
 
7741ec9
5aca75a
 
 
 
 
24fe16c
 
 
 
 
 
7741ec9
5aca75a
 
3861128
 
5aca75a
3861128
5aca75a
2c756fd
5aca75a
 
 
 
3861128
 
 
5aca75a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import { Message } from '@/types/chat';
import { OpenAIModel } from '@/types/openai';

import { OPENAI_API_HOST } from '../app/const';

import {
  ParsedEvent,
  ReconnectInterval,
  createParser,
} from 'eventsource-parser';

export class LLMError extends Error {
  type: string;
  param: string;
  code: string;

  constructor(message: string, type: string, param: string, code: string) {
    super(message);
    this.name = 'LLMError';
    this.type = type;
    this.param = param;
    this.code = code;
  }
}

export const LLMStream = async (
  model: OpenAIModel,
  systemPrompt: string,
  temperature : number,
  key: string,
  messages: Message[],
) => {
  let url = `${OPENAI_API_HOST}/v1/chat/completions`;
  const res = await fetch(url, {
    headers: {
      'Content-Type': 'application/json'
    },
    method: 'POST',
    body: JSON.stringify({
      messages: [
        {
          role: 'system',
          content: systemPrompt,
        },
        ...messages,
      ],
      max_tokens: 1000,
      temperature: temperature,
      stream: true,
    }),
  });

  const encoder = new TextEncoder();
  const decoder = new TextDecoder();

  if (res.status !== 200) {
    const result = await res.json();
    if (result.error) {
      throw new LLMError(
        result.error.message,
        result.error.type,
        result.error.param,
        result.error.code,
      );
    } else {
      throw new Error(
        `LLM API returned an error: ${
          decoder.decode(result?.value) || result.statusText
        }`,
      );
    }
  }

  const stream = new ReadableStream({
    async start(controller) {
      const onParse = (event: ParsedEvent | ReconnectInterval) => {
        if (event.type === 'event') {
          const data = event.data;

          try {
            const json = JSON.parse(data);
            if (json.choices[0].finish_reason != null) {
              controller.close();
              return;
            }
            const text = json.choices[0].delta.content;
            const queue = encoder.encode(text);
            controller.enqueue(queue);
          } catch (e) {
            controller.error(e);
          }
        }
      };

      const parser = createParser(onParse);

      for await (const chunk of res.body as any) {
        parser.feed(decoder.decode(chunk));
      }
    },
  });

  return stream;
};