Spaces:
Build error
Build error
Matthew Hollings
commited on
Commit
·
6b9687e
1
Parent(s):
ddc92b4
working with gpt2
Browse files- .gitignore +2 -0
- app.py +50 -0
- fine-tune-llm.ipynb +177 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
flagged/
|
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
# A sequence of lines both those typed in and the line so far
|
4 |
+
# when save is clicked the txt file is downloaded
|
5 |
+
lines = []
|
6 |
+
|
7 |
+
|
8 |
+
def greet(name):
|
9 |
+
return "Hello " + name + "!"
|
10 |
+
|
11 |
+
|
12 |
+
def add_to_lines(new_line):
|
13 |
+
# TODO: add new_line to the array
|
14 |
+
# TODO: send the full text to the language model generator
|
15 |
+
lines.append(new_line)
|
16 |
+
return "this is the next line in the poem"
|
17 |
+
|
18 |
+
|
19 |
+
def downloadtext():
|
20 |
+
# somehow print the values from the list
|
21 |
+
pass
|
22 |
+
|
23 |
+
|
24 |
+
# TODO: somehow loop and create all of the text added so far
|
25 |
+
|
26 |
+
with gr.Blocks() as demo:
|
27 |
+
gr.Markdown("Start typing below and then click **Run** to see the output.")
|
28 |
+
# Need to render a group of these
|
29 |
+
with gr.Group():
|
30 |
+
with gr.Row():
|
31 |
+
inp = gr.Textbox(placeholder="What is your name?")
|
32 |
+
out = gr.Textbox()
|
33 |
+
btn = gr.Button("Run")
|
34 |
+
btn.click(fn=add_to_lines, inputs=inp, outputs=out)
|
35 |
+
|
36 |
+
|
37 |
+
# demo = gr.Interface(
|
38 |
+
# fn=getnextline,
|
39 |
+
# inputs=gr.Textbox(lines=1, placeholder="..."),
|
40 |
+
# outputs=gr.Markdown(
|
41 |
+
# """
|
42 |
+
# text as output
|
43 |
+
# """
|
44 |
+
# ),
|
45 |
+
# allow_flagging="never",
|
46 |
+
# )
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
demo.launch()
|
fine-tune-llm.ipynb
CHANGED
@@ -103,6 +103,183 @@
|
|
103 |
"classifier(\"We are very happy to show you the 🤗 Transformers library.\")"
|
104 |
]
|
105 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
{
|
107 |
"cell_type": "code",
|
108 |
"execution_count": null,
|
|
|
103 |
"classifier(\"We are very happy to show you the 🤗 Transformers library.\")"
|
104 |
]
|
105 |
},
|
106 |
+
{
|
107 |
+
"cell_type": "code",
|
108 |
+
"execution_count": null,
|
109 |
+
"metadata": {},
|
110 |
+
"outputs": [],
|
111 |
+
"source": [
|
112 |
+
"# Take a prompt and generate a line of text"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "code",
|
117 |
+
"execution_count": 3,
|
118 |
+
"metadata": {},
|
119 |
+
"outputs": [
|
120 |
+
{
|
121 |
+
"data": {
|
122 |
+
"application/vnd.jupyter.widget-view+json": {
|
123 |
+
"model_id": "6f80cb24ef764bd192e5d3af79f9f5f1",
|
124 |
+
"version_major": 2,
|
125 |
+
"version_minor": 0
|
126 |
+
},
|
127 |
+
"text/plain": [
|
128 |
+
"Downloading: 0%| | 0.00/665 [00:00<?, ?B/s]"
|
129 |
+
]
|
130 |
+
},
|
131 |
+
"metadata": {},
|
132 |
+
"output_type": "display_data"
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"data": {
|
136 |
+
"application/vnd.jupyter.widget-view+json": {
|
137 |
+
"model_id": "4e64c3a035b54f0c90ca5cc6e341ad21",
|
138 |
+
"version_major": 2,
|
139 |
+
"version_minor": 0
|
140 |
+
},
|
141 |
+
"text/plain": [
|
142 |
+
"Downloading: 0%| | 0.00/475M [00:00<?, ?B/s]"
|
143 |
+
]
|
144 |
+
},
|
145 |
+
"metadata": {},
|
146 |
+
"output_type": "display_data"
|
147 |
+
},
|
148 |
+
{
|
149 |
+
"name": "stderr",
|
150 |
+
"output_type": "stream",
|
151 |
+
"text": [
|
152 |
+
"All model checkpoint layers were used when initializing TFGPT2LMHeadModel.\n",
|
153 |
+
"\n",
|
154 |
+
"All the layers of TFGPT2LMHeadModel were initialized from the model checkpoint at gpt2.\n",
|
155 |
+
"If your task is similar to the task the model of the checkpoint was trained on, you can already use TFGPT2LMHeadModel for predictions without further training.\n"
|
156 |
+
]
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"data": {
|
160 |
+
"application/vnd.jupyter.widget-view+json": {
|
161 |
+
"model_id": "4f442dd13c5747e1811c2199423de0c9",
|
162 |
+
"version_major": 2,
|
163 |
+
"version_minor": 0
|
164 |
+
},
|
165 |
+
"text/plain": [
|
166 |
+
"Downloading: 0%| | 0.00/0.99M [00:00<?, ?B/s]"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
"metadata": {},
|
170 |
+
"output_type": "display_data"
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"data": {
|
174 |
+
"application/vnd.jupyter.widget-view+json": {
|
175 |
+
"model_id": "a88572455b744b18b99c5bd775944d77",
|
176 |
+
"version_major": 2,
|
177 |
+
"version_minor": 0
|
178 |
+
},
|
179 |
+
"text/plain": [
|
180 |
+
"Downloading: 0%| | 0.00/446k [00:00<?, ?B/s]"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
"metadata": {},
|
184 |
+
"output_type": "display_data"
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"data": {
|
188 |
+
"application/vnd.jupyter.widget-view+json": {
|
189 |
+
"model_id": "d31a3e7e53a7422eabfcb61ff5248b8b",
|
190 |
+
"version_major": 2,
|
191 |
+
"version_minor": 0
|
192 |
+
},
|
193 |
+
"text/plain": [
|
194 |
+
"Downloading: 0%| | 0.00/1.29M [00:00<?, ?B/s]"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
"metadata": {},
|
198 |
+
"output_type": "display_data"
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"name": "stderr",
|
202 |
+
"output_type": "stream",
|
203 |
+
"text": [
|
204 |
+
"Setting `pad_token_id` to 50256 (first `eos_token_id`) to generate sequence\n"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"text/plain": [
|
210 |
+
"[{'generated_text': 'Hello, I\\'m a language model for the world of design,\" explained the senior designer. \"In JavaScript, each line represents a block of code that'},\n",
|
211 |
+
" {'generated_text': \"Hello, I'm a language modeler extraordinaire. So if you're looking for an elegant and flexible way to express your language or for an\"},\n",
|
212 |
+
" {'generated_text': \"Hello, I'm a language modeler for Ruby using R, and as a newbie to Rails, I've been very interested in these two techniques\"}]"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
"execution_count": 3,
|
216 |
+
"metadata": {},
|
217 |
+
"output_type": "execute_result"
|
218 |
+
}
|
219 |
+
],
|
220 |
+
"source": [
|
221 |
+
"from transformers import pipeline\n",
|
222 |
+
"generator = pipeline('text-generation', model = 'gpt2')\n",
|
223 |
+
"generator(\"Hello, I'm a language model\", max_length = 30, num_return_sequences=3)"
|
224 |
+
]
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"cell_type": "code",
|
228 |
+
"execution_count": 3,
|
229 |
+
"metadata": {},
|
230 |
+
"outputs": [
|
231 |
+
{
|
232 |
+
"data": {
|
233 |
+
"application/vnd.jupyter.widget-view+json": {
|
234 |
+
"model_id": "af1c7c8ed0a84d74823d961f6bdb1e0d",
|
235 |
+
"version_major": 2,
|
236 |
+
"version_minor": 0
|
237 |
+
},
|
238 |
+
"text/plain": [
|
239 |
+
"Downloading: 0%| | 0.00/523M [00:00<?, ?B/s]"
|
240 |
+
]
|
241 |
+
},
|
242 |
+
"metadata": {},
|
243 |
+
"output_type": "display_data"
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"name": "stderr",
|
247 |
+
"output_type": "stream",
|
248 |
+
"text": [
|
249 |
+
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"data": {
|
254 |
+
"text/plain": [
|
255 |
+
"[{'generated_text': 'something to start with, they say, but even if it was just to add an element of humor to the recipe, she said it could become a'},\n",
|
256 |
+
" {'generated_text': \"something to start with. You don't have to have a real connection with the people in this building to have any sort of connection with them. And\"},\n",
|
257 |
+
" {'generated_text': \"something to start with, as I've seen several years to come. You're supposed to be a good, loving parent, and your kids are supposed\"}]"
|
258 |
+
]
|
259 |
+
},
|
260 |
+
"execution_count": 3,
|
261 |
+
"metadata": {},
|
262 |
+
"output_type": "execute_result"
|
263 |
+
}
|
264 |
+
],
|
265 |
+
"source": [
|
266 |
+
"from transformers import pipeline\n",
|
267 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
268 |
+
"\n",
|
269 |
+
"# tokenizer = AutoTokenizer.from_pretrained(\"BritishLibraryLabs/bl-books-genre\")\n",
|
270 |
+
"# model = AutoModelForCausalLM.from_pretrained(\"BritishLibraryLabs/bl-books-genre\")\n",
|
271 |
+
"# \"BritishLibraryLabs/bl-books-genre\"\n",
|
272 |
+
"\n",
|
273 |
+
"tokenizer = AutoTokenizer.from_pretrained(\"gpt2\")\n",
|
274 |
+
"model = AutoModelForCausalLM.from_pretrained(\"gpt2\")\n",
|
275 |
+
"\n",
|
276 |
+
"# generator = pipeline('text-generation', model = \"BritishLibraryLabs/bl-books-genre\")\n",
|
277 |
+
"# generator(\"Hello, I'm a language model\", max_length = 30, num_return_sequences=3)\n",
|
278 |
+
"\n",
|
279 |
+
"generator = pipeline(task=\"text-generation\", model=model, tokenizer=tokenizer)\n",
|
280 |
+
"generator('something to start with', max_length = 30, num_return_sequences=3)\n"
|
281 |
+
]
|
282 |
+
},
|
283 |
{
|
284 |
"cell_type": "code",
|
285 |
"execution_count": null,
|