Spaces:
Build error
Build error
Matthew Hollings
commited on
Commit
·
3d96507
1
Parent(s):
4565d47
Use my fine-tuned model from huggingface
Browse files- .gitignore +2 -1
- app.py +1 -1
- fine-tuning-for-casual-language-model.ipynb +119 -151
.gitignore
CHANGED
@@ -2,4 +2,5 @@ __pycache__
|
|
2 |
flagged/
|
3 |
gutenberg-dammit-files-v002.zip
|
4 |
tmp_trainer
|
5 |
-
*.gz
|
|
|
|
2 |
flagged/
|
3 |
gutenberg-dammit-files-v002.zip
|
4 |
tmp_trainer
|
5 |
+
*.gz
|
6 |
+
gpt2-poetry-model
|
app.py
CHANGED
@@ -3,7 +3,7 @@ import gradio as gr
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Set up the generatove model transformer pipeline
|
6 |
-
generator = pipeline("text-generation", model="
|
7 |
|
8 |
# A sequence of lines both those typed in and the line so far
|
9 |
# when save is clicked the txt file is downloaded
|
|
|
3 |
from transformers import pipeline
|
4 |
|
5 |
# Set up the generatove model transformer pipeline
|
6 |
+
generator = pipeline("text-generation", model="matthh/gpt2-poetry-model")
|
7 |
|
8 |
# A sequence of lines both those typed in and the line so far
|
9 |
# when save is clicked the txt file is downloaded
|
fine-tuning-for-casual-language-model.ipynb
CHANGED
@@ -2,7 +2,7 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
@@ -11,7 +11,7 @@
|
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
-
"execution_count":
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
17 |
"source": [
|
@@ -43,29 +43,16 @@
|
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
-
"execution_count":
|
47 |
"metadata": {},
|
48 |
-
"outputs": [
|
49 |
-
{
|
50 |
-
"ename": "ImportError",
|
51 |
-
"evalue": "This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers.",
|
52 |
-
"output_type": "error",
|
53 |
-
"traceback": [
|
54 |
-
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
55 |
-
"\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
|
56 |
-
"Cell \u001b[0;32mIn [4], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mcheck_min_version\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m4.23.0.dev0\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
57 |
-
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/utils/__init__.py:32\u001b[0m, in \u001b[0;36mcheck_min_version\u001b[0;34m(min_version)\u001b[0m\n\u001b[1;32m 30\u001b[0m error_message \u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mThis example requires a minimum version of \u001b[39m\u001b[39m{\u001b[39;00mmin_version\u001b[39m}\u001b[39;00m\u001b[39m,\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 31\u001b[0m error_message \u001b[39m+\u001b[39m\u001b[39m=\u001b[39m \u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m but the version found is \u001b[39m\u001b[39m{\u001b[39;00m__version__\u001b[39m}\u001b[39;00m\u001b[39m.\u001b[39m\u001b[39m\\n\u001b[39;00m\u001b[39m\"\u001b[39m\n\u001b[0;32m---> 32\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mImportError\u001b[39;00m(\n\u001b[1;32m 33\u001b[0m error_message\n\u001b[1;32m 34\u001b[0m \u001b[39m+\u001b[39m (\n\u001b[1;32m 35\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other \u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 36\u001b[0m \u001b[39m\"\u001b[39m\u001b[39mversions of HuggingFace Transformers.\u001b[39m\u001b[39m\"\u001b[39m\n\u001b[1;32m 37\u001b[0m )\n\u001b[1;32m 38\u001b[0m )\n",
|
58 |
-
"\u001b[0;31mImportError\u001b[0m: This example requires a source install from HuggingFace Transformers (see `https://huggingface.co/transformers/installation.html#installing-from-source`), but the version found is 4.11.3.\nCheck out https://huggingface.co/transformers/examples.html for the examples corresponding to other versions of HuggingFace Transformers."
|
59 |
-
]
|
60 |
-
}
|
61 |
-
],
|
62 |
"source": [
|
63 |
"# check_min_version(\"4.23.0.dev0\")"
|
64 |
]
|
65 |
},
|
66 |
{
|
67 |
"cell_type": "code",
|
68 |
-
"execution_count":
|
69 |
"metadata": {},
|
70 |
"outputs": [],
|
71 |
"source": [
|
@@ -74,7 +61,7 @@
|
|
74 |
},
|
75 |
{
|
76 |
"cell_type": "code",
|
77 |
-
"execution_count":
|
78 |
"metadata": {},
|
79 |
"outputs": [],
|
80 |
"source": [
|
@@ -90,90 +77,23 @@
|
|
90 |
},
|
91 |
{
|
92 |
"cell_type": "code",
|
93 |
-
"execution_count":
|
94 |
"metadata": {},
|
95 |
"outputs": [
|
96 |
{
|
97 |
"name": "stderr",
|
98 |
"output_type": "stream",
|
99 |
"text": [
|
100 |
-
"
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
"name": "stdout",
|
105 |
-
"output_type": "stream",
|
106 |
-
"text": [
|
107 |
-
"Downloading and preparing dataset csv/merve--poetry to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a...\n"
|
108 |
]
|
109 |
},
|
110 |
{
|
111 |
"data": {
|
112 |
"application/vnd.jupyter.widget-view+json": {
|
113 |
-
"model_id": "
|
114 |
-
"version_major": 2,
|
115 |
-
"version_minor": 0
|
116 |
-
},
|
117 |
-
"text/plain": [
|
118 |
-
"Downloading data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
119 |
-
]
|
120 |
-
},
|
121 |
-
"metadata": {},
|
122 |
-
"output_type": "display_data"
|
123 |
-
},
|
124 |
-
{
|
125 |
-
"data": {
|
126 |
-
"application/vnd.jupyter.widget-view+json": {
|
127 |
-
"model_id": "32c10441ff20404cb153f6b27f16a829",
|
128 |
-
"version_major": 2,
|
129 |
-
"version_minor": 0
|
130 |
-
},
|
131 |
-
"text/plain": [
|
132 |
-
"Downloading data: 0%| | 0.00/606k [00:00<?, ?B/s]"
|
133 |
-
]
|
134 |
-
},
|
135 |
-
"metadata": {},
|
136 |
-
"output_type": "display_data"
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"data": {
|
140 |
-
"application/vnd.jupyter.widget-view+json": {
|
141 |
-
"model_id": "7ca47bc06937463e91d3948d7703ac64",
|
142 |
-
"version_major": 2,
|
143 |
-
"version_minor": 0
|
144 |
-
},
|
145 |
-
"text/plain": [
|
146 |
-
"Extracting data files: 0%| | 0/1 [00:00<?, ?it/s]"
|
147 |
-
]
|
148 |
-
},
|
149 |
-
"metadata": {},
|
150 |
-
"output_type": "display_data"
|
151 |
-
},
|
152 |
-
{
|
153 |
-
"data": {
|
154 |
-
"application/vnd.jupyter.widget-view+json": {
|
155 |
-
"model_id": "1631dbdc53d04b14a8a7733883bbd1cc",
|
156 |
-
"version_major": 2,
|
157 |
-
"version_minor": 0
|
158 |
-
},
|
159 |
-
"text/plain": [
|
160 |
-
"0 tables [00:00, ? tables/s]"
|
161 |
-
]
|
162 |
-
},
|
163 |
-
"metadata": {},
|
164 |
-
"output_type": "display_data"
|
165 |
-
},
|
166 |
-
{
|
167 |
-
"name": "stdout",
|
168 |
-
"output_type": "stream",
|
169 |
-
"text": [
|
170 |
-
"Dataset csv downloaded and prepared to /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a. Subsequent calls will reuse this data.\n"
|
171 |
-
]
|
172 |
-
},
|
173 |
-
{
|
174 |
-
"data": {
|
175 |
-
"application/vnd.jupyter.widget-view+json": {
|
176 |
-
"model_id": "3c93229d66ad46d9a88da5f6a9528f2e",
|
177 |
"version_major": 2,
|
178 |
"version_minor": 0
|
179 |
},
|
@@ -191,7 +111,7 @@
|
|
191 |
},
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
-
"execution_count":
|
195 |
"metadata": {},
|
196 |
"outputs": [],
|
197 |
"source": [
|
@@ -200,16 +120,18 @@
|
|
200 |
},
|
201 |
{
|
202 |
"cell_type": "code",
|
203 |
-
"execution_count":
|
204 |
"metadata": {},
|
205 |
"outputs": [],
|
206 |
"source": [
|
207 |
-
"config = AutoConfig.from_pretrained('gpt2')"
|
|
|
|
|
208 |
]
|
209 |
},
|
210 |
{
|
211 |
"cell_type": "code",
|
212 |
-
"execution_count":
|
213 |
"metadata": {},
|
214 |
"outputs": [
|
215 |
{
|
@@ -218,7 +140,7 @@
|
|
218 |
"Embedding(50257, 768)"
|
219 |
]
|
220 |
},
|
221 |
-
"execution_count":
|
222 |
"metadata": {},
|
223 |
"output_type": "execute_result"
|
224 |
}
|
@@ -228,12 +150,13 @@
|
|
228 |
" \"gpt2\",\n",
|
229 |
" config=config\n",
|
230 |
")\n",
|
|
|
231 |
"model.resize_token_embeddings(len(tokenizer))"
|
232 |
]
|
233 |
},
|
234 |
{
|
235 |
"cell_type": "code",
|
236 |
-
"execution_count":
|
237 |
"metadata": {},
|
238 |
"outputs": [
|
239 |
{
|
@@ -245,7 +168,7 @@
|
|
245 |
"})"
|
246 |
]
|
247 |
},
|
248 |
-
"execution_count":
|
249 |
"metadata": {},
|
250 |
"output_type": "execute_result"
|
251 |
}
|
@@ -256,7 +179,7 @@
|
|
256 |
},
|
257 |
{
|
258 |
"cell_type": "code",
|
259 |
-
"execution_count":
|
260 |
"metadata": {},
|
261 |
"outputs": [
|
262 |
{
|
@@ -265,7 +188,7 @@
|
|
265 |
"'Mythology & Folklore'"
|
266 |
]
|
267 |
},
|
268 |
-
"execution_count":
|
269 |
"metadata": {},
|
270 |
"output_type": "execute_result"
|
271 |
}
|
@@ -276,7 +199,7 @@
|
|
276 |
},
|
277 |
{
|
278 |
"cell_type": "code",
|
279 |
-
"execution_count":
|
280 |
"metadata": {},
|
281 |
"outputs": [
|
282 |
{
|
@@ -290,7 +213,7 @@
|
|
290 |
"})"
|
291 |
]
|
292 |
},
|
293 |
-
"execution_count":
|
294 |
"metadata": {},
|
295 |
"output_type": "execute_result"
|
296 |
}
|
@@ -301,7 +224,7 @@
|
|
301 |
},
|
302 |
{
|
303 |
"cell_type": "code",
|
304 |
-
"execution_count":
|
305 |
"metadata": {},
|
306 |
"outputs": [],
|
307 |
"source": [
|
@@ -312,7 +235,7 @@
|
|
312 |
},
|
313 |
{
|
314 |
"cell_type": "code",
|
315 |
-
"execution_count":
|
316 |
"metadata": {},
|
317 |
"outputs": [],
|
318 |
"source": [
|
@@ -330,7 +253,7 @@
|
|
330 |
},
|
331 |
{
|
332 |
"cell_type": "code",
|
333 |
-
"execution_count":
|
334 |
"metadata": {},
|
335 |
"outputs": [],
|
336 |
"source": [
|
@@ -341,29 +264,14 @@
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
-
"execution_count":
|
345 |
"metadata": {},
|
346 |
"outputs": [
|
347 |
-
{
|
348 |
-
"data": {
|
349 |
-
"application/vnd.jupyter.widget-view+json": {
|
350 |
-
"model_id": "82c09dbdfa1a47d79607a4c9729fb286",
|
351 |
-
"version_major": 2,
|
352 |
-
"version_minor": 0
|
353 |
-
},
|
354 |
-
"text/plain": [
|
355 |
-
"Running tokenizer on dataset: 0%| | 0/1 [00:00<?, ?ba/s]"
|
356 |
-
]
|
357 |
-
},
|
358 |
-
"metadata": {},
|
359 |
-
"output_type": "display_data"
|
360 |
-
},
|
361 |
{
|
362 |
"name": "stderr",
|
363 |
"output_type": "stream",
|
364 |
"text": [
|
365 |
-
"
|
366 |
-
"^^^^^^^^^^^^^^^^ Please ignore the warning above - this long input will be chunked into smaller bits before being passed to the model.\n"
|
367 |
]
|
368 |
}
|
369 |
],
|
@@ -380,7 +288,7 @@
|
|
380 |
},
|
381 |
{
|
382 |
"cell_type": "code",
|
383 |
-
"execution_count":
|
384 |
"metadata": {},
|
385 |
"outputs": [],
|
386 |
"source": [
|
@@ -389,7 +297,7 @@
|
|
389 |
},
|
390 |
{
|
391 |
"cell_type": "code",
|
392 |
-
"execution_count":
|
393 |
"metadata": {},
|
394 |
"outputs": [],
|
395 |
"source": [
|
@@ -413,22 +321,15 @@
|
|
413 |
},
|
414 |
{
|
415 |
"cell_type": "code",
|
416 |
-
"execution_count":
|
417 |
"metadata": {},
|
418 |
"outputs": [
|
419 |
{
|
420 |
-
"
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
},
|
426 |
-
"text/plain": [
|
427 |
-
"Grouping texts in chunks of 1024: 0%| | 0/1 [00:00<?, ?ba/s]"
|
428 |
-
]
|
429 |
-
},
|
430 |
-
"metadata": {},
|
431 |
-
"output_type": "display_data"
|
432 |
}
|
433 |
],
|
434 |
"source": [
|
@@ -443,7 +344,7 @@
|
|
443 |
},
|
444 |
{
|
445 |
"cell_type": "code",
|
446 |
-
"execution_count":
|
447 |
"metadata": {},
|
448 |
"outputs": [],
|
449 |
"source": [
|
@@ -459,14 +360,30 @@
|
|
459 |
},
|
460 |
{
|
461 |
"cell_type": "code",
|
462 |
-
"execution_count":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
463 |
"metadata": {},
|
464 |
"outputs": [],
|
465 |
"source": [
|
466 |
"# Initialize our Trainer\n",
|
467 |
"trainer = Trainer(\n",
|
468 |
" model=model,\n",
|
469 |
-
"
|
470 |
" train_dataset=train_dataset,\n",
|
471 |
" # eval_dataset=eval_dataset,\n",
|
472 |
" tokenizer=tokenizer,\n",
|
@@ -483,7 +400,7 @@
|
|
483 |
},
|
484 |
{
|
485 |
"cell_type": "code",
|
486 |
-
"execution_count":
|
487 |
"metadata": {},
|
488 |
"outputs": [
|
489 |
{
|
@@ -558,18 +475,69 @@
|
|
558 |
],
|
559 |
"source": [
|
560 |
"# Training\n",
|
561 |
-
"checkpoint = None\n",
|
562 |
-
"train_result = trainer.train(resume_from_checkpoint=checkpoint)\n",
|
563 |
-
"trainer.save_model() # Saves the tokenizer too for easy upload\n",
|
564 |
"\n",
|
565 |
-
"metrics = train_result.metrics\n",
|
566 |
"\n",
|
567 |
-
"max_train_samples = (len(train_dataset))\n",
|
568 |
-
"metrics[\"train_samples\"] = min(max_train_samples, len(train_dataset))\n",
|
569 |
"\n",
|
570 |
-
"trainer.log_metrics(\"train\", metrics)\n",
|
571 |
-
"trainer.save_metrics(\"train\", metrics)\n",
|
572 |
-
"trainer.save_state()"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
573 |
]
|
574 |
}
|
575 |
],
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 3,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
"source": [
|
|
|
11 |
},
|
12 |
{
|
13 |
"cell_type": "code",
|
14 |
+
"execution_count": 4,
|
15 |
"metadata": {},
|
16 |
"outputs": [],
|
17 |
"source": [
|
|
|
43 |
},
|
44 |
{
|
45 |
"cell_type": "code",
|
46 |
+
"execution_count": 5,
|
47 |
"metadata": {},
|
48 |
+
"outputs": [],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
"source": [
|
50 |
"# check_min_version(\"4.23.0.dev0\")"
|
51 |
]
|
52 |
},
|
53 |
{
|
54 |
"cell_type": "code",
|
55 |
+
"execution_count": 6,
|
56 |
"metadata": {},
|
57 |
"outputs": [],
|
58 |
"source": [
|
|
|
61 |
},
|
62 |
{
|
63 |
"cell_type": "code",
|
64 |
+
"execution_count": 7,
|
65 |
"metadata": {},
|
66 |
"outputs": [],
|
67 |
"source": [
|
|
|
77 |
},
|
78 |
{
|
79 |
"cell_type": "code",
|
80 |
+
"execution_count": 8,
|
81 |
"metadata": {},
|
82 |
"outputs": [
|
83 |
{
|
84 |
"name": "stderr",
|
85 |
"output_type": "stream",
|
86 |
"text": [
|
87 |
+
"/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/huggingface_hub/utils/_deprecation.py:97: FutureWarning: Deprecated argument(s) used in 'dataset_info': token. Will not be supported from version '0.12'.\n",
|
88 |
+
" warnings.warn(message, FutureWarning)\n",
|
89 |
+
"Using custom data configuration merve--poetry-ca9a13ef5858cc3a\n",
|
90 |
+
"Found cached dataset csv (/Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a)\n"
|
|
|
|
|
|
|
|
|
91 |
]
|
92 |
},
|
93 |
{
|
94 |
"data": {
|
95 |
"application/vnd.jupyter.widget-view+json": {
|
96 |
+
"model_id": "67606d054e4a4b2f9ddf99f07c02c328",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
"version_major": 2,
|
98 |
"version_minor": 0
|
99 |
},
|
|
|
111 |
},
|
112 |
{
|
113 |
"cell_type": "code",
|
114 |
+
"execution_count": 9,
|
115 |
"metadata": {},
|
116 |
"outputs": [],
|
117 |
"source": [
|
|
|
120 |
},
|
121 |
{
|
122 |
"cell_type": "code",
|
123 |
+
"execution_count": 10,
|
124 |
"metadata": {},
|
125 |
"outputs": [],
|
126 |
"source": [
|
127 |
+
"config = AutoConfig.from_pretrained('gpt2')\n",
|
128 |
+
"\n",
|
129 |
+
"# max_seq_length"
|
130 |
]
|
131 |
},
|
132 |
{
|
133 |
"cell_type": "code",
|
134 |
+
"execution_count": 11,
|
135 |
"metadata": {},
|
136 |
"outputs": [
|
137 |
{
|
|
|
140 |
"Embedding(50257, 768)"
|
141 |
]
|
142 |
},
|
143 |
+
"execution_count": 11,
|
144 |
"metadata": {},
|
145 |
"output_type": "execute_result"
|
146 |
}
|
|
|
150 |
" \"gpt2\",\n",
|
151 |
" config=config\n",
|
152 |
")\n",
|
153 |
+
"model.max_seq_length = 128\n",
|
154 |
"model.resize_token_embeddings(len(tokenizer))"
|
155 |
]
|
156 |
},
|
157 |
{
|
158 |
"cell_type": "code",
|
159 |
+
"execution_count": 12,
|
160 |
"metadata": {},
|
161 |
"outputs": [
|
162 |
{
|
|
|
168 |
"})"
|
169 |
]
|
170 |
},
|
171 |
+
"execution_count": 12,
|
172 |
"metadata": {},
|
173 |
"output_type": "execute_result"
|
174 |
}
|
|
|
179 |
},
|
180 |
{
|
181 |
"cell_type": "code",
|
182 |
+
"execution_count": 13,
|
183 |
"metadata": {},
|
184 |
"outputs": [
|
185 |
{
|
|
|
188 |
"'Mythology & Folklore'"
|
189 |
]
|
190 |
},
|
191 |
+
"execution_count": 13,
|
192 |
"metadata": {},
|
193 |
"output_type": "execute_result"
|
194 |
}
|
|
|
199 |
},
|
200 |
{
|
201 |
"cell_type": "code",
|
202 |
+
"execution_count": 14,
|
203 |
"metadata": {},
|
204 |
"outputs": [
|
205 |
{
|
|
|
213 |
"})"
|
214 |
]
|
215 |
},
|
216 |
+
"execution_count": 14,
|
217 |
"metadata": {},
|
218 |
"output_type": "execute_result"
|
219 |
}
|
|
|
224 |
},
|
225 |
{
|
226 |
"cell_type": "code",
|
227 |
+
"execution_count": 15,
|
228 |
"metadata": {},
|
229 |
"outputs": [],
|
230 |
"source": [
|
|
|
235 |
},
|
236 |
{
|
237 |
"cell_type": "code",
|
238 |
+
"execution_count": 16,
|
239 |
"metadata": {},
|
240 |
"outputs": [],
|
241 |
"source": [
|
|
|
253 |
},
|
254 |
{
|
255 |
"cell_type": "code",
|
256 |
+
"execution_count": 17,
|
257 |
"metadata": {},
|
258 |
"outputs": [],
|
259 |
"source": [
|
|
|
264 |
},
|
265 |
{
|
266 |
"cell_type": "code",
|
267 |
+
"execution_count": 18,
|
268 |
"metadata": {},
|
269 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
{
|
271 |
"name": "stderr",
|
272 |
"output_type": "stream",
|
273 |
"text": [
|
274 |
+
"Loading cached processed dataset at /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a/cache-62fd9c772e30c8d3.arrow\n"
|
|
|
275 |
]
|
276 |
}
|
277 |
],
|
|
|
288 |
},
|
289 |
{
|
290 |
"cell_type": "code",
|
291 |
+
"execution_count": 19,
|
292 |
"metadata": {},
|
293 |
"outputs": [],
|
294 |
"source": [
|
|
|
297 |
},
|
298 |
{
|
299 |
"cell_type": "code",
|
300 |
+
"execution_count": 20,
|
301 |
"metadata": {},
|
302 |
"outputs": [],
|
303 |
"source": [
|
|
|
321 |
},
|
322 |
{
|
323 |
"cell_type": "code",
|
324 |
+
"execution_count": 21,
|
325 |
"metadata": {},
|
326 |
"outputs": [
|
327 |
{
|
328 |
+
"name": "stderr",
|
329 |
+
"output_type": "stream",
|
330 |
+
"text": [
|
331 |
+
"Loading cached processed dataset at /Users/matth/.cache/huggingface/datasets/merve___csv/merve--poetry-ca9a13ef5858cc3a/0.0.0/652c3096f041ee27b04d2232d41f10547a8fecda3e284a79a0ec4053c916ef7a/cache-88d7c64be469684a.arrow\n"
|
332 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
333 |
}
|
334 |
],
|
335 |
"source": [
|
|
|
344 |
},
|
345 |
{
|
346 |
"cell_type": "code",
|
347 |
+
"execution_count": 22,
|
348 |
"metadata": {},
|
349 |
"outputs": [],
|
350 |
"source": [
|
|
|
360 |
},
|
361 |
{
|
362 |
"cell_type": "code",
|
363 |
+
"execution_count": 25,
|
364 |
+
"metadata": {},
|
365 |
+
"outputs": [],
|
366 |
+
"source": [
|
367 |
+
"training_args = TrainingArguments(\n",
|
368 |
+
" output_dir=\"gpt2-poetry-model\", \n",
|
369 |
+
" overwrite_output_dir=True,\n",
|
370 |
+
" # per_gpu_train_batch_size=256\n",
|
371 |
+
" per_device_train_batch_size=16,\n",
|
372 |
+
" push_to_hub=True,\n",
|
373 |
+
" push_to_hub_token=\"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\"\n",
|
374 |
+
")"
|
375 |
+
]
|
376 |
+
},
|
377 |
+
{
|
378 |
+
"cell_type": "code",
|
379 |
+
"execution_count": 26,
|
380 |
"metadata": {},
|
381 |
"outputs": [],
|
382 |
"source": [
|
383 |
"# Initialize our Trainer\n",
|
384 |
"trainer = Trainer(\n",
|
385 |
" model=model,\n",
|
386 |
+
" args=training_args,\n",
|
387 |
" train_dataset=train_dataset,\n",
|
388 |
" # eval_dataset=eval_dataset,\n",
|
389 |
" tokenizer=tokenizer,\n",
|
|
|
400 |
},
|
401 |
{
|
402 |
"cell_type": "code",
|
403 |
+
"execution_count": null,
|
404 |
"metadata": {},
|
405 |
"outputs": [
|
406 |
{
|
|
|
475 |
],
|
476 |
"source": [
|
477 |
"# Training\n",
|
478 |
+
"# checkpoint = None\n",
|
479 |
+
"# train_result = trainer.train(resume_from_checkpoint=checkpoint)\n",
|
480 |
+
"# trainer.save_model() # Saves the tokenizer too for easy upload\n",
|
481 |
"\n",
|
482 |
+
"# metrics = train_result.metrics\n",
|
483 |
"\n",
|
484 |
+
"# max_train_samples = (len(train_dataset))\n",
|
485 |
+
"# metrics[\"train_samples\"] = min(max_train_samples, len(train_dataset))\n",
|
486 |
"\n",
|
487 |
+
"# trainer.log_metrics(\"train\", metrics)\n",
|
488 |
+
"# trainer.save_metrics(\"train\", metrics)\n",
|
489 |
+
"# trainer.save_state()\n",
|
490 |
+
"# # Upload the the hugging face hub for easy use in inference.\n",
|
491 |
+
"# trainer.push_to_hub()"
|
492 |
+
]
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"cell_type": "code",
|
496 |
+
"execution_count": 27,
|
497 |
+
"metadata": {},
|
498 |
+
"outputs": [
|
499 |
+
{
|
500 |
+
"data": {
|
501 |
+
"application/vnd.jupyter.widget-view+json": {
|
502 |
+
"model_id": "2cec8af2b332409bb857695a7b099653",
|
503 |
+
"version_major": 2,
|
504 |
+
"version_minor": 0
|
505 |
+
},
|
506 |
+
"text/plain": [
|
507 |
+
"VBox(children=(HTML(value='<center> <img\\nsrc=https://huggingface.co/front/assets/huggingface_logo-noborder.sv…"
|
508 |
+
]
|
509 |
+
},
|
510 |
+
"metadata": {},
|
511 |
+
"output_type": "display_data"
|
512 |
+
},
|
513 |
+
{
|
514 |
+
"name": "stderr",
|
515 |
+
"output_type": "stream",
|
516 |
+
"text": [
|
517 |
+
"Saving model checkpoint to gpt2-poetry-model\n",
|
518 |
+
"Configuration saved in gpt2-poetry-model/config.json\n",
|
519 |
+
"Model weights saved in gpt2-poetry-model/pytorch_model.bin\n",
|
520 |
+
"tokenizer config file saved in gpt2-poetry-model/tokenizer_config.json\n",
|
521 |
+
"Special tokens file saved in gpt2-poetry-model/special_tokens_map.json\n"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"ename": "AttributeError",
|
526 |
+
"evalue": "'Trainer' object has no attribute 'repo'",
|
527 |
+
"output_type": "error",
|
528 |
+
"traceback": [
|
529 |
+
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
|
530 |
+
"\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
|
531 |
+
"Cell \u001b[0;32mIn [27], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mhuggingface_hub\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m notebook_login\n\u001b[1;32m 2\u001b[0m notebook_login()\n\u001b[0;32m----> 3\u001b[0m \u001b[43mtrainer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpush_to_hub\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
|
532 |
+
"File \u001b[0;32m/opt/homebrew/Caskroom/miniforge/base/envs/augmented_poetry/lib/python3.8/site-packages/transformers/trainer.py:2677\u001b[0m, in \u001b[0;36mTrainer.push_to_hub\u001b[0;34m(self, commit_message, blocking, **kwargs)\u001b[0m\n\u001b[1;32m 2674\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mnot\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mis_world_process_zero():\n\u001b[1;32m 2675\u001b[0m \u001b[39mreturn\u001b[39;00m\n\u001b[0;32m-> 2677\u001b[0m git_head_commit_url \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mrepo\u001b[39m.\u001b[39mpush_to_hub(commit_message\u001b[39m=\u001b[39mcommit_message, blocking\u001b[39m=\u001b[39mblocking)\n\u001b[1;32m 2678\u001b[0m \u001b[39m# push separately the model card to be independant from the rest of the model\u001b[39;00m\n\u001b[1;32m 2679\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39margs\u001b[39m.\u001b[39mshould_save:\n",
|
533 |
+
"\u001b[0;31mAttributeError\u001b[0m: 'Trainer' object has no attribute 'repo'"
|
534 |
+
]
|
535 |
+
}
|
536 |
+
],
|
537 |
+
"source": [
|
538 |
+
"from huggingface_hub import notebook_login\n",
|
539 |
+
"notebook_login()\n",
|
540 |
+
"trainer.push_to_hub()"
|
541 |
]
|
542 |
}
|
543 |
],
|