matrixportal's picture
Update app.py
9cace94 verified
raw
history blame
21.6 kB
import os
import subprocess
import signal
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
import gradio as gr
import tempfile
from huggingface_hub import HfApi, ModelCard, whoami
from gradio_huggingfacehub_search import HuggingfaceHubSearch
from pathlib import Path
from textwrap import dedent
from apscheduler.schedulers.background import BackgroundScheduler
# used for restarting the space
HF_TOKEN = os.environ.get("HF_TOKEN")
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py"
# escape HTML for logging
def escape(s: str) -> str:
s = s.replace("&", "&") # Must be done first!
s = s.replace("<", "&lt;")
s = s.replace(">", "&gt;")
s = s.replace('"', "&quot;")
s = s.replace("\n", "<br/>")
return s
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str):
imatrix_command = [
"./llama.cpp/llama-imatrix",
"-m", model_path,
"-f", train_data_path,
"-ngl", "99",
"--output-frequency", "10",
"-o", output_path,
]
if not os.path.isfile(model_path):
raise Exception(f"Model file not found: {model_path}")
print("Running imatrix command...")
process = subprocess.Popen(imatrix_command, shell=False)
try:
process.wait(timeout=60) # added wait
except subprocess.TimeoutExpired:
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...")
process.send_signal(signal.SIGINT)
try:
process.wait(timeout=5) # grace period
except subprocess.TimeoutExpired:
print("Imatrix proc still didn't term. Forecfully terming process...")
process.kill()
print("Importance matrix generation completed.")
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None):
print(f"Model path: {model_path}")
print(f"Output dir: {outdir}")
if oauth_token.token is None:
raise ValueError("You have to be logged in.")
split_cmd = [
"./llama.cpp/llama-gguf-split",
"--split",
]
if split_max_size:
split_cmd.append("--split-max-size")
split_cmd.append(split_max_size)
else:
split_cmd.append("--split-max-tensors")
split_cmd.append(str(split_max_tensors))
# args for output
model_path_prefix = '.'.join(model_path.split('.')[:-1]) # remove the file extension
split_cmd.append(model_path)
split_cmd.append(model_path_prefix)
print(f"Split command: {split_cmd}")
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True)
print(f"Split command stdout: {result.stdout}")
print(f"Split command stderr: {result.stderr}")
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error splitting the model: {stderr_str}")
print("Model split successfully!")
# remove the original model file if needed
if os.path.exists(model_path):
os.remove(model_path)
model_file_prefix = model_path_prefix.split('/')[-1]
print(f"Model file name prefix: {model_file_prefix}")
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")]
if sharded_model_files:
print(f"Sharded model files: {sharded_model_files}")
api = HfApi(token=oauth_token.token)
for file in sharded_model_files:
file_path = os.path.join(outdir, file)
print(f"Uploading file: {file_path}")
try:
api.upload_file(
path_or_fileobj=file_path,
path_in_repo=file,
repo_id=repo_id,
)
except Exception as e:
raise Exception(f"Error uploading file {file_path}: {e}")
else:
raise Exception("No sharded files found.")
print("Sharded model has been uploaded successfully!")
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
if oauth_token is None or oauth_token.token is None:
raise ValueError("You must be logged in to use GGUF-my-repo")
model_name = model_id.split('/')[-1]
try:
api = HfApi(token=oauth_token.token)
dl_pattern = ["*.md", "*.json", "*.model"]
pattern = (
"*.safetensors"
if any(
file.path.endswith(".safetensors")
for file in api.list_repo_tree(
repo_id=model_id,
recursive=True,
)
)
else "*.bin"
)
dl_pattern += [pattern]
if not os.path.exists("downloads"):
os.makedirs("downloads")
if not os.path.exists("outputs"):
os.makedirs("outputs")
with tempfile.TemporaryDirectory(dir="outputs") as outdir:
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf")
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir:
# Keep the model name as the dirname so the model name metadata is populated correctly
local_dir = Path(tmpdir)/model_name
print(local_dir)
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
print("Model downloaded successfully!")
print(f"Current working directory: {os.getcwd()}")
print(f"Model directory contents: {os.listdir(local_dir)}")
config_dir = local_dir/"config.json"
adapter_config_dir = local_dir/"adapter_config.json"
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir):
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co/spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.')
result = subprocess.run([
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16
], shell=False, capture_output=True)
print(result)
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error converting to fp16: {stderr_str}")
print("Model converted to fp16 successfully!")
print(f"Converted model path: {fp16}")
imatrix_path = Path(outdir)/"imatrix.dat"
if use_imatrix:
if train_data_file:
train_data_path = train_data_file.name
else:
train_data_path = "llama.cpp/groups_merged.txt" #fallback calibration dataset
print(f"Training data file path: {train_data_path}")
if not os.path.isfile(train_data_path):
raise Exception(f"Training data file not found: {train_data_path}")
generate_importance_matrix(fp16, train_data_path, imatrix_path)
else:
print("Not using imatrix quantization.")
# Quantize the model
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name)
if use_imatrix:
quantise_ggml = [
"./llama.cpp/llama-quantize",
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method
]
else:
quantise_ggml = [
"./llama.cpp/llama-quantize",
fp16, quantized_gguf_path, q_method
]
result = subprocess.run(quantise_ggml, shell=False, capture_output=True)
if result.returncode != 0:
stderr_str = result.stderr.decode("utf-8")
raise Exception(f"Error quantizing: {stderr_str}")
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
print(f"Quantized model path: {quantized_gguf_path}")
# Create empty repo
username = whoami(oauth_token.token)["name"]
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-GGUF", exist_ok=True, private=private_repo)
new_repo_id = new_repo_url.repo_id
print("Repo created successfully!", new_repo_url)
try:
card = ModelCard.load(model_id, token=oauth_token.token)
except:
card = ModelCard("")
if card.data.tags is None:
card.data.tags = []
card.data.tags.append("llama-cpp")
card.data.tags.append("matrixportal")
card.data.base_model = model_id
card.text = dedent(
f"""
# {new_repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp via the ggml.ai's [all-gguf-same-where](https://huggingface.co/spaces/matrixportal/all-gguf-same-where) space.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
"""
)
readme_path = Path(outdir)/"README.md"
card.save(readme_path)
# Quant listesi oluşturma
quant_list = f"""
## ✅ Quantized Models Download List
### 🔍 Recommended Quantizations
- **✨ General CPU Use:** [`Q4_K_M`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) (Best balance of speed/quality)
- **📱 ARM Devices:** [`Q4_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) (Optimized for ARM CPUs)
- **🏆 Maximum Quality:** [`Q8_0`](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) (Near-original quality)
### 📦 Full Quantization Options
| 🚀 Download | 🔢 Type | 📝 Notes |
|:---------|:-----|:------|
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q2_k.gguf) | ![Q2_K](https://img.shields.io/badge/Q2_K-1A73E8) | Basic quantization |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_s.gguf) | ![Q3_K_S](https://img.shields.io/badge/Q3_K_S-34A853) | Small size |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_m.gguf) | ![Q3_K_M](https://img.shields.io/badge/Q3_K_M-FBBC05) | Balanced quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q3_k_l.gguf) | ![Q3_K_L](https://img.shields.io/badge/Q3_K_L-4285F4) | Better quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_0.gguf) | ![Q4_0](https://img.shields.io/badge/Q4_0-EA4335) | Fast on ARM |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_s.gguf) | ![Q4_K_S](https://img.shields.io/badge/Q4_K_S-673AB7) | Fast, recommended |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf) | ![Q4_K_M](https://img.shields.io/badge/Q4_K_M-673AB7) ⭐ | Best balance |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_0.gguf) | ![Q5_0](https://img.shields.io/badge/Q5_0-FF6D01) | Good quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_k_s.gguf) | ![Q5_K_S](https://img.shields.io/badge/Q5_K_S-0F9D58) | Balanced |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q5_k_m.gguf) | ![Q5_K_M](https://img.shields.io/badge/Q5_K_M-0F9D58) | High quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q6_k.gguf) | ![Q6_K](https://img.shields.io/badge/Q6_K-4285F4) 🏆 | Very good quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q8_0.gguf) | ![Q8_0](https://img.shields.io/badge/Q8_0-EA4335) ⚡ | Fast, best quality |
| [Download](https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-f16.gguf) | ![F16](https://img.shields.io/badge/F16-000000) | Maximum accuracy |
💡 **Tip:** Use `F16` for maximum precision when quality is critical
# GGUF Model Quantization & Usage Guide with llama.cpp
## What is GGUF and Quantization?
**GGUF** (GPT-Generated Unified Format) is an efficient model file format developed by the `llama.cpp` team that:
- Supports multiple quantization levels
- Works cross-platform
- Enables fast loading and inference
**Quantization** converts model weights to lower precision data types (e.g., 4-bit integers instead of 32-bit floats) to:
- Reduce model size
- Decrease memory usage
- Speed up inference
- (With minor accuracy trade-offs)
## Step-by-Step Guide
### 1. Prerequisites
```bash
# System updates
sudo apt update && sudo apt upgrade -y
# Dependencies
sudo apt install -y build-essential cmake python3-pip
# Clone and build llama.cpp
git clone https://github.com/ggerganov/llama.cpp
cd llama.cpp
make -j4
```
### 2. Using Quantized Models from Hugging Face
My automated quantization script produces models in this format:
```
https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf
```
Download your quantized model directly:
```bash
wget https://huggingface.co/{new_repo_id}/resolve/main/{model_name.lower()}-q4_k_m.gguf
```
### 3. Running the Quantized Model
Basic usage:
```bash
./main -m {model_name.lower()}-q4_k_m.gguf -p "Your prompt here" -n 128
```
Example with a creative writing prompt:
```bash
./main -m {model_name.lower()}-q4_k_m.gguf \
-p "[INST] Write a short poem about AI quantization in the style of Shakespeare [/INST]" \
-n 256 -c 2048 -t 8 --temp 0.7
```
Advanced parameters:
```bash
./main -m {model_name.lower()}-q4_k_m.gguf \
-p "Question: What is the GGUF format?\nAnswer:" \
-n 256 -c 2048 -t 8 --temp 0.7 --top-k 40 --top-p 0.9
```
### 4. Python Integration
Install the Python package:
```bash
pip install llama-cpp-python
```
Example script:
```python
from llama_cpp import Llama
# Initialize the model
llm = Llama(
model_path="{model_name.lower()}-q4_k_m.gguf",
n_ctx=2048,
n_threads=8
)
# Run inference
response = llm(
"[INST] Explain GGUF quantization to a beginner [/INST]",
max_tokens=256,
temperature=0.7,
top_p=0.9
)
print(response["choices"][0]["text"])
```
## Performance Tips
1. **Hardware Utilization**:
- Set thread count with `-t` (typically CPU core count)
- Compile with CUDA/OpenCL for GPU support
2. **Memory Optimization**:
- Lower quantization (like q4_k_m) uses less RAM
- Adjust context size with `-c` parameter
3. **Speed/Accuracy Balance**:
- Higher bit quantization is slower but more accurate
- Reduce randomness with `--temp 0` for consistent results
## FAQ
**Q: What quantization levels are available?**
A: Common options include q4_0, q4_k_m, q5_0, q5_k_m, q8_0
**Q: How much performance loss occurs with q4_k_m?**
A: Typically 2-5% accuracy reduction but 4x smaller size
**Q: How to enable GPU support?**
A: Build with `make LLAMA_CUBLAS=1` for NVIDIA GPUs
## Useful Resources
1. [llama.cpp GitHub](https://github.com/ggerganov/llama.cpp)
2. [GGUF Format Specs](https://github.com/ggerganov/ggml/blob/master/docs/gguf.md)
3. [Hugging Face Model Hub](https://huggingface.co/models)
"""
# README'yi güncelle (ModelCard kullanarak)
card.text += quant_list
readme_path = Path(outdir)/"README.md"
card.save(readme_path)
if split_model:
split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size)
else:
try:
print(f"Uploading quantized model: {quantized_gguf_path}")
api.upload_file(
path_or_fileobj=quantized_gguf_path,
path_in_repo=quantized_gguf_name,
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading quantized model: {e}")
if os.path.isfile(imatrix_path):
try:
print(f"Uploading imatrix.dat: {imatrix_path}")
api.upload_file(
path_or_fileobj=imatrix_path,
path_in_repo="imatrix.dat",
repo_id=new_repo_id,
)
except Exception as e:
raise Exception(f"Error uploading imatrix.dat: {e}")
api.upload_file(
path_or_fileobj=readme_path,
path_in_repo="README.md",
repo_id=new_repo_id,
)
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!")
# end of the TemporaryDirectory(dir="outputs") block; temporary outputs are deleted here
return (
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>',
"llama.png",
)
except Exception as e:
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png")
css="""/* Custom CSS to allow scrolling */
.gradio-container {overflow-y: auto;}
"""
# Create Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown("You must be logged in to use GGUF-my-repo.")
gr.LoginButton(min_width=250)
model_id = HuggingfaceHubSearch(
label="Hub Model ID",
placeholder="Search for model id on Huggingface",
search_type="model",
)
q_method = gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16"],
label="Quantization Method",
info="GGML quantization type",
value="Q4_K_M",
filterable=False,
visible=True
)
imatrix_q_method = gr.Dropdown(
["IQ3_M", "IQ3_XXS", "Q4_0", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S", "Q6_K", "Q8_0", "F16"],
label="Imatrix Quantization Method",
info="GGML imatrix quants type",
value="IQ4_NL",
filterable=False,
visible=False
)
use_imatrix = gr.Checkbox(
value=False,
label="Use Imatrix Quantization",
info="Use importance matrix for quantization."
)
private_repo = gr.Checkbox(
value=False,
label="Private Repo",
info="Create a private repo under your username."
)
train_data_file = gr.File(
label="Training Data File",
file_types=["txt"],
visible=False
)
split_model = gr.Checkbox(
value=False,
label="Split Model",
info="Shard the model using gguf-split."
)
split_max_tensors = gr.Number(
value=256,
label="Max Tensors per File",
info="Maximum number of tensors per file when splitting model.",
visible=False
)
split_max_size = gr.Textbox(
label="Max File Size",
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G",
visible=False
)
def update_visibility(use_imatrix):
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
use_imatrix.change(
fn=update_visibility,
inputs=use_imatrix,
outputs=[q_method, imatrix_q_method, train_data_file]
)
iface = gr.Interface(
fn=process_model,
inputs=[
model_id,
q_method,
use_imatrix,
imatrix_q_method,
private_repo,
train_data_file,
split_model,
split_max_tensors,
split_max_size,
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants, blazingly fast ⚡!",
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
api_name=False
)
def update_split_visibility(split_model):
return gr.update(visible=split_model), gr.update(visible=split_model)
split_model.change(
fn=update_split_visibility,
inputs=split_model,
outputs=[split_max_tensors, split_max_size]
)
def restart_space():
HfApi().restart_space(repo_id="matrixportal/all-gguf-same-where", token=HF_TOKEN, factory_reboot=True)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=21600)
scheduler.start()
# Launch the interface
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)