matjarm commited on
Commit
fac059c
verified
1 Parent(s): 8166fc6

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.py +31 -142
  2. class_names.txt +100 -0
  3. pytorch_model.bin +3 -0
  4. requirements.txt +1 -6
app.py CHANGED
@@ -1,154 +1,43 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
- from diffusers import DiffusionPipeline
7
  import torch
 
 
8
 
9
- device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
-
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
-
17
- pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
- pipe = pipe.to(device)
19
-
20
- MAX_SEED = np.iinfo(np.int32).max
21
- MAX_IMAGE_SIZE = 1024
22
-
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
- def infer(
26
- prompt,
27
- negative_prompt,
28
- seed,
29
- randomize_seed,
30
- width,
31
- height,
32
- guidance_scale,
33
- num_inference_steps,
34
- progress=gr.Progress(track_tqdm=True),
35
- ):
36
- if randomize_seed:
37
- seed = random.randint(0, MAX_SEED)
38
-
39
- generator = torch.Generator().manual_seed(seed)
40
-
41
- image = pipe(
42
- prompt=prompt,
43
- negative_prompt=negative_prompt,
44
- guidance_scale=guidance_scale,
45
- num_inference_steps=num_inference_steps,
46
- width=width,
47
- height=height,
48
- generator=generator,
49
- ).images[0]
50
-
51
- return image, seed
52
-
53
-
54
- examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
- ]
59
-
60
- css = """
61
- #col-container {
62
- margin: 0 auto;
63
- max-width: 640px;
64
- }
65
- """
66
-
67
- with gr.Blocks(css=css) as demo:
68
- with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
-
71
- with gr.Row():
72
- prompt = gr.Text(
73
- label="Prompt",
74
- show_label=False,
75
- max_lines=1,
76
- placeholder="Enter your prompt",
77
- container=False,
78
- )
79
-
80
- run_button = gr.Button("Run", scale=0, variant="primary")
81
-
82
- result = gr.Image(label="Result", show_label=False)
83
 
84
- with gr.Accordion("Advanced Settings", open=False):
85
- negative_prompt = gr.Text(
86
- label="Negative prompt",
87
- max_lines=1,
88
- placeholder="Enter a negative prompt",
89
- visible=False,
90
- )
91
 
92
- seed = gr.Slider(
93
- label="Seed",
94
- minimum=0,
95
- maximum=MAX_SEED,
96
- step=1,
97
- value=0,
98
- )
 
 
 
 
 
 
 
 
 
 
 
99
 
100
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
 
101
 
102
- with gr.Row():
103
- width = gr.Slider(
104
- label="Width",
105
- minimum=256,
106
- maximum=MAX_IMAGE_SIZE,
107
- step=32,
108
- value=1024, # Replace with defaults that work for your model
109
- )
110
 
111
- height = gr.Slider(
112
- label="Height",
113
- minimum=256,
114
- maximum=MAX_IMAGE_SIZE,
115
- step=32,
116
- value=1024, # Replace with defaults that work for your model
117
- )
118
 
119
- with gr.Row():
120
- guidance_scale = gr.Slider(
121
- label="Guidance scale",
122
- minimum=0.0,
123
- maximum=10.0,
124
- step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
- )
127
 
128
- num_inference_steps = gr.Slider(
129
- label="Number of inference steps",
130
- minimum=1,
131
- maximum=50,
132
- step=1,
133
- value=2, # Replace with defaults that work for your model
134
- )
135
 
136
- gr.Examples(examples=examples, inputs=[prompt])
137
- gr.on(
138
- triggers=[run_button.click, prompt.submit],
139
- fn=infer,
140
- inputs=[
141
- prompt,
142
- negative_prompt,
143
- seed,
144
- randomize_seed,
145
- width,
146
- height,
147
- guidance_scale,
148
- num_inference_steps,
149
- ],
150
- outputs=[result, seed],
151
- )
152
 
153
- if __name__ == "__main__":
154
- demo.launch()
 
1
+ from pathlib import Path
 
 
2
 
 
 
3
  import torch
4
+ import gradio as gr
5
+ from torch import nn
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
+ LABELS = Path('class_names.txt').read_text().splitlines()
 
 
 
 
 
 
9
 
10
+ model = nn.Sequential(
11
+ nn.Conv2d(1, 32, 3, padding='same'),
12
+ nn.ReLU(),
13
+ nn.MaxPool2d(2),
14
+ nn.Conv2d(32, 64, 3, padding='same'),
15
+ nn.ReLU(),
16
+ nn.MaxPool2d(2),
17
+ nn.Conv2d(64, 128, 3, padding='same'),
18
+ nn.ReLU(),
19
+ nn.MaxPool2d(2),
20
+ nn.Flatten(),
21
+ nn.Linear(1152, 256),
22
+ nn.ReLU(),
23
+ nn.Linear(256, len(LABELS)),
24
+ )
25
+ state_dict = torch.load('pytorch_model.bin', map_location='cpu')
26
+ model.load_state_dict(state_dict, strict=False)
27
+ model.eval()
28
 
29
+ def predict(im):
30
+ x = torch.tensor(im, dtype=torch.float32).unsqueeze(0).unsqueeze(0) / 255.
31
 
32
+ with torch.no_grad():
33
+ out = model(x)
 
 
 
 
 
 
34
 
35
+ probabilities = torch.nn.functional.softmax(out[0], dim=0)
 
 
 
 
 
 
36
 
37
+ values, indices = torch.topk(probabilities, 5)
 
 
 
 
 
 
 
38
 
39
+ return {LABELS[i]: v.item() for i, v in zip(indices, values)}
 
 
 
 
 
 
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
+ interface = gr.Interface(predict, inputs='sketchpad', outputs='label', live=True)
43
+ interface.launch(debug=True)
class_names.txt ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ airplane
2
+ alarm_clock
3
+ anvil
4
+ apple
5
+ axe
6
+ baseball
7
+ baseball_bat
8
+ basketball
9
+ beard
10
+ bed
11
+ bench
12
+ bicycle
13
+ bird
14
+ book
15
+ bread
16
+ bridge
17
+ broom
18
+ butterfly
19
+ camera
20
+ candle
21
+ car
22
+ cat
23
+ ceiling_fan
24
+ cell_phone
25
+ chair
26
+ circle
27
+ clock
28
+ cloud
29
+ coffee_cup
30
+ cookie
31
+ cup
32
+ diving_board
33
+ donut
34
+ door
35
+ drums
36
+ dumbbell
37
+ envelope
38
+ eye
39
+ eyeglasses
40
+ face
41
+ fan
42
+ flower
43
+ frying_pan
44
+ grapes
45
+ hammer
46
+ hat
47
+ headphones
48
+ helmet
49
+ hot_dog
50
+ ice_cream
51
+ key
52
+ knife
53
+ ladder
54
+ laptop
55
+ light_bulb
56
+ lightning
57
+ line
58
+ lollipop
59
+ microphone
60
+ moon
61
+ mountain
62
+ moustache
63
+ mushroom
64
+ pants
65
+ paper_clip
66
+ pencil
67
+ pillow
68
+ pizza
69
+ power_outlet
70
+ radio
71
+ rainbow
72
+ rifle
73
+ saw
74
+ scissors
75
+ screwdriver
76
+ shorts
77
+ shovel
78
+ smiley_face
79
+ snake
80
+ sock
81
+ spider
82
+ spoon
83
+ square
84
+ star
85
+ stop_sign
86
+ suitcase
87
+ sun
88
+ sword
89
+ syringe
90
+ t-shirt
91
+ table
92
+ tennis_racquet
93
+ tent
94
+ tooth
95
+ traffic_light
96
+ tree
97
+ triangle
98
+ umbrella
99
+ wheel
100
+ wristwatch
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:effb6ea6f1593c09e8247944028ed9c309b5ff1cef82ba38b822bee2ca4d0f3c
3
+ size 1656903
requirements.txt CHANGED
@@ -1,6 +1 @@
1
- accelerate
2
- diffusers
3
- invisible_watermark
4
- torch
5
- transformers
6
- xformers
 
1
+ torch