File size: 30,841 Bytes
ae0b104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
<!DOCTYPE html>
<html lang="fr">
<head>
    <meta charset="UTF-8">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Bolt AutoML - Solution intuitive</title>
    <script src="https://cdn.tailwindcss.com"></script>
    <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
    <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
    <style>
        .file-upload {
            position: relative;
            display: flex;
            flex-direction: column;
            align-items: center;
            padding: 2rem;
            border: 2px dashed #cbd5e0;
            border-radius: 1rem;
            transition: all 0.3s ease;
        }
        
        .file-upload:hover {
            border-color: #4f46e5;
            background-color: #f8fafc;
        }
        
        .data-preview {
            max-height: 300px;
            overflow-y: auto;
            border: 1px solid #e5e7eb;
            border-radius: 0.5rem;
        }
        
        .dashboard-card {
            transition: all 0.3s ease;
            box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
            border-radius: 0.75rem;
        }
        
        .model-table {
            width: 100%;
            border-collapse: collapse;
        }
        
        .model-table th, .model-table td {
            padding: 0.75rem;
            text-align: left;
            border-bottom: 1px solid #e5e7eb;
        }
        
        .model-table th {
            background-color: #f9fafb;
            font-weight: 600;
            color: #4b5563;
        }
        
        @media (max-width: 768px) {
            .dashboard-grid {
                grid-template-columns: 1fr;
                gap: 1rem;
            }
        }
    </style>
</head>
<body class="bg-gray-50 font-sans">
    <div class="container mx-auto px-4 py-8 max-w-6xl">
        <!-- Header -->
        <header class="mb-8 text-center">
            <div class="flex justify-center items-center mb-4">
                <i class="fas fa-bolt text-4xl text-indigo-600 mr-3"></i>
                <h1 class="text-3xl font-bold text-gray-800">Statmining AutoML</h1>
            </div>
            <p class="text-gray-600 max-w-3xl mx-auto">
                Solution intuitive de Machine Learning sans code pour vos analyses de données
            </p>
        </header>

        <!-- Main Card -->
        <div class="bg-white rounded-xl shadow-sm overflow-hidden mb-8">
            <div class="p-6">
                <div class="flex items-center mb-6">
                    <div class="bg-indigo-100 p-3 rounded-full mr-4">
                        <i class="fas fa-play-circle text-indigo-600 text-xl"></i>
                    </div>
                    <h2 class="text-xl font-semibold text-gray-800">Démarrer une nouvelle expérimentation AutoML</h2>
                </div>

                <!-- Step 1: File Upload -->
                <div class="mb-8">
                    <h3 class="text-lg font-medium text-gray-700 mb-4 flex items-center">
                        <span class="bg-indigo-100 text-indigo-800 rounded-full w-6 h-6 flex items-center justify-center text-sm mr-2">1</span>
                        Importez votre jeu de données
                    </h3>
                    <div class="file-upload" id="fileUploadArea">
                        <input type="file" id="fileInput" class="hidden" accept=".csv, .xlsx">
                        <i class="fas fa-file-csv text-4xl text-gray-400 mb-3"></i>
                        <p class="text-gray-500 mb-4">Glissez-déposez votre fichier .csv ou .xlsx ici</p>
                        <button id="uploadBtn" class="px-6 py-2 bg-indigo-600 text-white rounded-full hover:bg-indigo-700 transition-colors">
                            <i class="fas fa-upload mr-2"></i> Sélectionner un fichier
                        </button>
                    </div>
                    
                    <!-- Data Preview -->
                    <div id="dataPreview" class="hidden mt-6">
                        <h4 class="text-md font-medium text-gray-700 mb-3">Aperçu des données</h4>
                        <div class="data-preview">
                            <table class="w-full divide-y divide-gray-200">
                                <thead class="bg-gray-50">
                                    <tr id="previewHeader"></tr>
                                </thead>
                                <tbody class="bg-white divide-y divide-gray-200" id="previewBody"></tbody>
                            </table>
                        </div>
                    </div>
                </div>

                <!-- Step 2: Target Selection -->
                <div class="mb-8" id="targetSection" style="display: none;">
                    <h3 class="text-lg font-medium text-gray-700 mb-4 flex items-center">
                        <span class="bg-indigo-100 text-indigo-800 rounded-full w-6 h-6 flex items-center justify-center text-sm mr-2">2</span>
                        Sélectionnez la variable cible
                    </h3>
                    <div class="grid grid-cols-1 md:grid-cols-2 gap-6">
                        <div>
                            <select id="targetSelect" class="w-full px-4 py-2 border border-gray-300 rounded-lg focus:ring-indigo-500 focus:border-indigo-500">
                                <option value="" disabled selected>Choisissez une colonne</option>
                            </select>
                            <p class="text-sm text-gray-500 mt-2">Cette variable sera celle que le modèle tentera de prédire.</p>
                        </div>
                        <div class="bg-gray-50 p-4 rounded-lg">
                            <canvas id="targetChart"></canvas>
                        </div>
                    </div>
                </div>

                <!-- Step 3: Objectives -->
                <div class="mb-8" id="objectivesSection" style="display: none;">
                    <h3 class="text-lg font-medium text-gray-700 mb-4 flex items-center">
                        <span class="bg-indigo-100 text-indigo-800 rounded-full w-6 h-6 flex items-center justify-center text-sm mr-2">3</span>
                        Définissez vos objectifs
                    </h3>
                    <div class="space-y-3">
                        <div class="flex items-center">
                            <input type="checkbox" id="objective1" class="h-5 w-5 text-indigo-600 rounded focus:ring-indigo-500">
                            <label for="objective1" class="ml-3 text-gray-700">Obtenir un résultat très rapidement</label>
                        </div>
                        <div class="flex items-center">
                            <input type="checkbox" id="objective2" class="h-5 w-5 text-indigo-600 rounded focus:ring-indigo-500">
                            <label for="objective2" class="ml-3 text-gray-700">Obtenir un modèle très performant</label>
                        </div>
                        <div class="flex items-center">
                            <input type="checkbox" id="objective3" class="h-5 w-5 text-indigo-600 rounded focus:ring-indigo-500">
                            <label for="objective3" class="ml-3 text-gray-700">Obtenir un modèle interprétable</label>
                        </div>
                        <div class="flex items-center">
                            <input type="checkbox" id="objective4" class="h-5 w-5 text-indigo-600 rounded focus:ring-indigo-500">
                            <label for="objective4" class="ml-3 text-gray-700">Utiliser le modèle en temps réel</label>
                        </div>
                        <div class="flex items-center">
                            <input type="checkbox" id="objective5" class="h-5 w-5 text-indigo-600 rounded focus:ring-indigo-500">
                            <label for="objective5" class="ml-3 text-gray-700">Avoir un modèle simple</label>
                        </div>
                    </div>
                </div>

                <!-- Step 4: Launch -->
                <div class="text-center pt-4">
                    <button id="launchBtn" class="px-8 py-3 bg-indigo-600 text-white rounded-full hover:bg-indigo-700 transition-colors font-medium flex items-center mx-auto">
                        <i class="fas fa-rocket mr-2"></i> Lancer l'entraînement AutoML
                    </button>
                </div>
            </div>
        </div>

        <!-- Results Dashboard (Initially Hidden) -->
        <div id="resultsDashboard" class="hidden bg-white rounded-xl shadow-sm overflow-hidden mb-8">
            <div class="p-6">
                <div class="flex items-center mb-6">
                    <div class="bg-green-100 p-3 rounded-full mr-4">
                        <i class="fas fa-chart-line text-green-600 text-xl"></i>
                    </div>
                    <h2 class="text-xl font-semibold text-gray-800">Résultats de l'expérimentation AutoML</h2>
                </div>

                <div class="grid grid-cols-1 lg:grid-cols-2 gap-6 mb-6">
                    <!-- Top Left: Models Table -->
                    <div class="dashboard-card bg-white p-6 rounded-lg border border-gray-200">
                        <h3 class="text-lg font-medium text-gray-700 mb-4">
                            <i class="fas fa-table text-blue-500 mr-2"></i> Modèles testés
                        </h3>
                        <div class="overflow-x-auto">
                            <table class="model-table">
                                <thead>
                                    <tr>
                                        <th>Modèle</th>
                                        <th>Score</th>
                                        <th>Temps</th>
                                    </tr>
                                </thead>
                                <tbody id="modelsTableBody">
                                    <!-- Filled by JavaScript -->
                                </tbody>
                            </table>
                        </div>
                    </div>

                    <!-- Top Right: Feature Importance -->
                    <div class="dashboard-card bg-white p-6 rounded-lg border border-gray-200">
                        <h3 class="text-lg font-medium text-gray-700 mb-4">
                            <i class="fas fa-star text-yellow-500 mr-2"></i> Importance des variables
                        </h3>
                        <div class="h-64">
                            <canvas id="featureImportanceChart"></canvas>
                        </div>
                    </div>
                </div>

                <div class="grid grid-cols-1 lg:grid-cols-2 gap-6">
                    <!-- Bottom Left: Apply Model -->
                    <div class="dashboard-card bg-white p-6 rounded-lg border border-gray-200">
                        <h3 class="text-lg font-medium text-gray-700 mb-4">
                            <i class="fas fa-file-import text-purple-500 mr-2"></i> Appliquer le modèle
                        </h3>
                        <p class="text-gray-600 mb-4">Téléchargez un nouveau jeu de données pour obtenir des prédictions.</p>
                        <div class="file-upload" id="newFileUploadArea">
                            <input type="file" id="newFileInput" class="hidden" accept=".csv, .xlsx">
                            <button id="newUploadBtn" class="px-6 py-2 bg-purple-600 text-white rounded-full hover:bg-purple-700 transition-colors">
                                <i class="fas fa-upload mr-2"></i> Sélectionner un fichier
                            </button>
                        </div>
                    </div>

                    <!-- Bottom Right: Summary -->
                    <div class="dashboard-card bg-white p-6 rounded-lg border border-gray-200">
                        <h3 class="text-lg font-medium text-gray-700 mb-4">
                            <i class="fas fa-info-circle text-green-500 mr-2"></i> Résumé
                        </h3>
                        <div class="space-y-3">
                            <div class="flex">
                                <span class="text-gray-500 font-medium w-32">Fichier:</span>
                                <span id="expFilename" class="text-gray-700">donnees.csv</span>
                            </div>
                            <div class="flex">
                                <span class="text-gray-500 font-medium w-32">Cible:</span>
                                <span id="expTarget" class="text-gray-700">prix</span>
                            </div>
                            <div class="flex">
                                <span class="text-gray-500 font-medium w-32">Objectifs:</span>
                                <span id="expObjectives" class="text-gray-700">Performance, Rapidité</span>
                            </div>
                            <div class="flex">
                                <span class="text-gray-500 font-medium w-32">Modèle:</span>
                                <span id="expModel" class="text-gray-700">H2O AutoML</span>
                            </div>
                            <div class="flex">
                                <span class="text-gray-500 font-medium w-32">Score:</span>
                                <span id="expScore" class="text-gray-700">0.92 (AUC)</span>
                            </div>
                            <div class="flex">
                                <span class="text-gray-500 font-medium w-32">Durée:</span>
                                <span id="expTime" class="text-gray-700">2 min 34 sec</span>
                            </div>
                        </div>
                    </div>
                </div>
            </div>
        </div>
    </div>

    <script>
        // Sample data for demonstration
        const sampleData = {
            headers: ['ID', 'Age', 'Salaire', 'Département', 'Expérience', 'Poste'],
            rows: [
                [1, 32, 75000, 'Marketing', 5, 'Manager'],
                [2, 28, 65000, 'Ventes', 3, 'Associé'],
                [3, 45, 95000, 'IT', 15, 'Directeur'],
                [4, 36, 82000, 'RH', 8, 'Manager'],
                [5, 29, 68000, 'Ventes', 4, 'Associé'],
                [6, 41, 88000, 'IT', 10, 'Chef de projet'],
                [7, 35, 78000, 'Marketing', 7, 'Manager'],
                [8, 27, 62000, 'RH', 2, 'Associé']
            ]
        };

        // Mock models data
        const mockModels = [
            { name: 'H2O AutoML', score: 0.92, time: '1:45', type: 'Ensemble' },
            { name: 'LightAutoML', score: 0.91, time: '1:12', type: 'Gradient Boosting' },
            { name: 'MLJAR', score: 0.89, time: '2:03', type: 'Random Forest' },
            { name: 'Khiops', score: 0.88, time: '1:56', type: 'Decision Tree' },
            { name: 'StatMining', score: 0.85, time: '0:45', type: 'Logistic Regression' }
        ];

        // Mock feature importance
        const mockFeatures = [
            { name: 'Expérience', importance: 0.45 },
            { name: 'Age', importance: 0.32 },
            { name: 'Département', importance: 0.25 },
            { name: 'Formation', importance: 0.18 },
            { name: 'Localisation', importance: 0.12 },
            { name: 'Certifications', importance: 0.09 },
            { name: 'Compétences', importance: 0.07 },
            { name: 'Ancienneté', importance: 0.05 },
            { name: 'Projets', importance: 0.04 },
            { name: 'Langues', importance: 0.02 }
        ];

        // DOM Elements
        const fileInput = document.getElementById('fileInput');
        const uploadBtn = document.getElementById('uploadBtn');
        const fileUploadArea = document.getElementById('fileUploadArea');
        const dataPreview = document.getElementById('dataPreview');
        const previewHeader = document.getElementById('previewHeader');
        const previewBody = document.getElementById('previewBody');
        const targetSection = document.getElementById('targetSection');
        const targetSelect = document.getElementById('targetSelect');
        const objectivesSection = document.getElementById('objectivesSection');
        const launchBtn = document.getElementById('launchBtn');
        const resultsDashboard = document.getElementById('resultsDashboard');
        const modelsTableBody = document.getElementById('modelsTableBody');
        const newFileInput = document.getElementById('newFileInput');
        const newUploadBtn = document.getElementById('newUploadBtn');
        const newFileUploadArea = document.getElementById('newFileUploadArea');

        // Charts
        let targetChart = null;
        let featureImportanceChart = null;

        // Event Listeners
        uploadBtn.addEventListener('click', () => fileInput.click());
        newUploadBtn.addEventListener('click', () => newFileInput.click());
        
        fileInput.addEventListener('change', handleFileUpload);
        newFileInput.addEventListener('change', handleNewFileUpload);
        
        fileUploadArea.addEventListener('dragover', (e) => {
            e.preventDefault();
            fileUploadArea.classList.add('border-indigo-500', 'bg-indigo-50');
        });
        
        fileUploadArea.addEventListener('dragleave', () => {
            fileUploadArea.classList.remove('border-indigo-500', 'bg-indigo-50');
        });
        
        fileUploadArea.addEventListener('drop', (e) => {
            e.preventDefault();
            fileUploadArea.classList.remove('border-indigo-500', 'bg-indigo-50');
            fileInput.files = e.dataTransfer.files;
            handleFileUpload();
        });
        
        targetSelect.addEventListener('change', updateTargetChart);
        launchBtn.addEventListener('click', launchTraining);

        // Functions
        function handleFileUpload() {
            // In a real app, you would parse the actual file here
            // For this demo, we'll use sample data
            
            // Show preview
            displayDataPreview(sampleData.headers, sampleData.rows);
            dataPreview.classList.remove('hidden');
            
            // Populate target select
            populateTargetSelect(sampleData.headers);
            targetSection.style.display = 'block';
            objectivesSection.style.display = 'block';
        }
        
        function handleNewFileUpload() {
            alert('Nouveau fichier sélectionné pour les prédictions. Dans une application réelle, ce fichier serait envoyé au serveur pour traitement.');
        }
        
        function displayDataPreview(headers, rows) {
            // Clear previous content
            previewHeader.innerHTML = '';
            previewBody.innerHTML = '';
            
            // Add headers
            headers.forEach(header => {
                const th = document.createElement('th');
                th.className = 'px-6 py-3 text-left text-xs font-medium text-gray-500 uppercase tracking-wider';
                th.textContent = header;
                previewHeader.appendChild(th);
            });
            
            // Add rows
            rows.forEach(row => {
                const tr = document.createElement('tr');
                row.forEach(cell => {
                    const td = document.createElement('td');
                    td.className = 'px-6 py-4 whitespace-nowrap text-sm text-gray-500';
                    td.textContent = cell;
                    tr.appendChild(td);
                });
                previewBody.appendChild(tr);
            });
        }
        
        function populateTargetSelect(headers) {
            targetSelect.innerHTML = '<option value="" disabled selected>Choisissez une colonne</option>';
            
            headers.forEach(header => {
                const option = document.createElement('option');
                option.value = header;
                option.textContent = header;
                targetSelect.appendChild(option);
            });
        }
        
        function updateTargetChart() {
            const selectedColumn = targetSelect.value;
            const columnIndex = sampleData.headers.indexOf(selectedColumn);
            
            // Get values for the selected column
            const values = sampleData.rows.map(row => row[columnIndex]);
            
            // Determine if the column is categorical or numerical
            const isCategorical = typeof values[0] === 'string';
            
            // Destroy previous chart if exists
            if (targetChart) {
                targetChart.destroy();
            }
            
            const ctx = document.getElementById('targetChart').getContext('2d');
            
            if (isCategorical) {
                // For categorical data, create a bar chart
                const valueCounts = {};
                values.forEach(value => {
                    valueCounts[value] = (valueCounts[value] || 0) + 1;
                });
                
                targetChart = new Chart(ctx, {
                    type: 'bar',
                    data: {
                        labels: Object.keys(valueCounts),
                        datasets: [{
                            label: `Distribution de ${selectedColumn}`,
                            data: Object.values(valueCounts),
                            backgroundColor: 'rgba(79, 70, 229, 0.6)',
                            borderColor: 'rgba(79, 70, 229, 1)',
                            borderWidth: 1
                        }]
                    },
                    options: {
                        responsive: true,
                        plugins: {
                            legend: {
                                display: false
                            }
                        },
                        scales: {
                            y: {
                                beginAtZero: true,
                                title: {
                                    display: true,
                                    text: 'Nombre'
                                }
                            },
                            x: {
                                title: {
                                    display: true,
                                    text: selectedColumn
                                }
                            }
                        }
                    }
                });
            } else {
                // For numerical data, create a box plot (simulated with bar chart)
                // In a real app, you would use a proper box plot library
                const sortedValues = [...values].sort((a, b) => a - b);
                const q1 = sortedValues[Math.floor(sortedValues.length * 0.25)];
                const median = sortedValues[Math.floor(sortedValues.length * 0.5)];
                const q3 = sortedValues[Math.floor(sortedValues.length * 0.75)];
                const iqr = q3 - q1;
                const min = Math.max(sortedValues[0], q1 - 1.5 * iqr);
                const max = Math.min(sortedValues[sortedValues.length - 1], q3 + 1.5 * iqr);
                
                targetChart = new Chart(ctx, {
                    type: 'bar',
                    data: {
                        labels: [selectedColumn],
                        datasets: [{
                            label: 'Distribution',
                            data: [{
                                min: min,
                                q1: q1,
                                median: median,
                                q3: q3,
                                max: max
                            }],
                            backgroundColor: 'rgba(79, 70, 229, 0.2)',
                            borderColor: 'rgba(79, 70, 229, 1)',
                            borderWidth: 1
                        }]
                    },
                    options: {
                        responsive: true,
                        plugins: {
                            legend: {
                                display: false
                            },
                            tooltip: {
                                callbacks: {
                                    label: function(context) {
                                        const value = context.raw;
                                        return [
                                            `Min: ${value.min}`,
                                            `Q1: ${value.q1}`,
                                            `Médiane: ${value.median}`,
                                            `Q3: ${value.q3}`,
                                            `Max: ${value.max}`
                                        ];
                                    }
                                }
                            }
                        },
                        scales: {
                            y: {
                                beginAtZero: false,
                                title: {
                                    display: true,
                                    text: 'Valeur'
                                }
                            }
                        }
                    }
                });
            }
        }
        
        function launchTraining() {
            // Show loading state
            launchBtn.innerHTML = '<i class="fas fa-spinner fa-spin mr-2"></i> Entraînement en cours...';
            launchBtn.disabled = true;
            
            // Simulate training delay
            setTimeout(() => {
                // Display results
                displayResults();
                
                // Reset button
                launchBtn.innerHTML = '<i class="fas fa-rocket mr-2"></i> Lancer l\'entraînement AutoML';
                launchBtn.disabled = false;
            }, 2000);
        }
        
        function displayResults() {
            // Populate models table
            modelsTableBody.innerHTML = '';
            mockModels.forEach(model => {
                const tr = document.createElement('tr');
                
                const tdName = document.createElement('td');
                tdName.className = 'text-sm text-gray-900';
                tdName.textContent = model.name;
                
                const tdScore = document.createElement('td');
                tdScore.className = 'text-sm text-gray-900 font-medium';
                tdScore.textContent = model.score;
                
                const tdTime = document.createElement('td');
                tdTime.className = 'text-sm text-gray-500';
                tdTime.textContent = model.time;
                
                tr.appendChild(tdName);
                tr.appendChild(tdScore);
                tr.appendChild(tdTime);
                modelsTableBody.appendChild(tr);
            });
            
            // Create feature importance chart
            const ctx = document.getElementById('featureImportanceChart').getContext('2d');
            if (featureImportanceChart) {
                featureImportanceChart.destroy();
            }
            
            featureImportanceChart = new Chart(ctx, {
                type: 'bar',
                data: {
                    labels: mockFeatures.map(f => f.name),
                    datasets: [{
                        label: 'Importance',
                        data: mockFeatures.map(f => f.importance),
                        backgroundColor: 'rgba(79, 70, 229, 0.6)',
                        borderColor: 'rgba(79, 70, 229, 1)',
                        borderWidth: 1
                    }]
                },
                options: {
                    indexAxis: 'y',
                    responsive: true,
                    plugins: {
                        legend: {
                            display: false
                        }
                    },
                    scales: {
                        x: {
                            beginAtZero: true,
                            title: {
                                display: true,
                                text: 'Importance relative'
                            }
                        }
                    }
                }
            });
            
            // Update summary
            document.getElementById('expFilename').textContent = 'donnees.csv';
            document.getElementById('expTarget').textContent = targetSelect.value;
            
            const selectedObjectives = [];
            if (document.getElementById('objective1').checked) selectedObjectives.push('Rapidité');
            if (document.getElementById('objective2').checked) selectedObjectives.push('Performance');
            if (document.getElementById('objective3').checked) selectedObjectives.push('Interprétabilité');
            if (document.getElementById('objective4').checked) selectedObjectives.push('Temps réel');
            if (document.getElementById('objective5').checked) selectedObjectives.push('Simplicité');
            
            document.getElementById('expObjectives').textContent = selectedObjectives.join(', ') || 'Aucun';
            document.getElementById('expModel').textContent = mockModels[0].name;
            document.getElementById('expScore').textContent = `${mockModels[0].score} (AUC)`;
            document.getElementById('expTime').textContent = mockModels[0].time;
            
            // Show results dashboard
            resultsDashboard.classList.remove('hidden');
            
            // Scroll to results
            resultsDashboard.scrollIntoView({ behavior: 'smooth' });
        }
    </script>
<p style="border-radius: 8px; text-align: center; font-size: 12px; color: #fff; margin-top: 16px;position: fixed; left: 8px; bottom: 8px; z-index: 10; background: rgba(0, 0, 0, 0.8); padding: 4px 8px;">Made with <img src="https://enzostvs-deepsite.hf.space/logo.svg" alt="DeepSite Logo" style="width: 16px; height: 16px; vertical-align: middle;display:inline-block;margin-right:3px;filter:brightness(0) invert(1);"><a href="https://enzostvs-deepsite.hf.space" style="color: #fff;text-decoration: underline;" target="_blank" >DeepSite</a> - 🧬 <a href="https://enzostvs-deepsite.hf.space?remix=mathurinacheisoft/statmining-automl" style="color: #fff;text-decoration: underline;" target="_blank" >Remix</a></p></body>
</html>