Spaces:
Runtime error
Runtime error
File size: 35,070 Bytes
0edab04 666e796 0edab04 666e796 0edab04 666e796 0edab04 666e796 0edab04 666e796 990159e 0edab04 666e796 dc3a0c9 990159e 0edab04 990159e 666e796 951a5b3 990159e 666e796 990159e 666e796 990159e 0edab04 666e796 0edab04 666e796 0edab04 666e796 0edab04 d9a62b3 0a2958b 8dde6b0 0a2958b 666e796 0edab04 666e796 8dde6b0 666e796 8dde6b0 06719d4 8dde6b0 666e796 0edab04 8dde6b0 0edab04 666e796 72e0f08 666e796 0edab04 666e796 0edab04 666e796 0edab04 666e796 0edab04 0a2958b 666e796 0a2958b 666e796 0a2958b 666e796 0a2958b d9a62b3 666e796 951a5b3 666e796 d9a62b3 666e796 d9a62b3 666e796 17d79ff d9a62b3 17d79ff d9a62b3 17d79ff 8dde6b0 17d79ff d9a62b3 17d79ff d9a62b3 17d79ff d9a62b3 0a2958b 666e796 0a2958b 666e796 0a2958b 666e796 9c145c1 666e796 0a2958b 666e796 1c742b7 666e796 0a2958b 666e796 0a2958b 666e796 0a2958b 666e796 0a2958b 666e796 0a2958b 666e796 0a2958b 0edab04 666e796 0edab04 666e796 0edab04 666e796 0edab04 e419f45 666e796 e419f45 666e796 e419f45 666e796 e419f45 666e796 e419f45 0edab04 666e796 0edab04 e0d016a 666e796 e0d016a 666e796 e0d016a 8dde6b0 0edab04 666e796 1c742b7 666e796 1c742b7 666e796 0edab04 1c742b7 0edab04 e419f45 666e796 0edab04 666e796 0edab04 666e796 1c742b7 666e796 0edab04 666e796 0edab04 e0d016a 666e796 0edab04 45b2ac8 1c742b7 990159e 45b2ac8 990159e e0d016a 0a2958b 990159e 1c742b7 990159e 666e796 1c742b7 666e796 1c742b7 666e796 45b2ac8 0a2958b 990159e 45b2ac8 0edab04 d9a62b3 0edab04 45b2ac8 0a2958b 990159e 0edab04 1c742b7 0edab04 666e796 0edab04 9c145c1 0edab04 1c742b7 0edab04 9c145c1 0edab04 337790f 0edab04 e0d016a 0edab04 e0d016a 0edab04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "3bedf0dc-8d8e-4ede-a9e6-b8f35136aa00",
"metadata": {},
"outputs": [],
"source": [
"#|default_exp app"
]
},
{
"cell_type": "markdown",
"id": "c2496690-28b2-4a79-89d5-f971b4d6f3d4",
"metadata": {},
"source": [
"# Initialization"
]
},
{
"cell_type": "markdown",
"id": "736caa6e-d79f-46e6-bf42-6594c8b809d4",
"metadata": {},
"source": [
"## Get/Set Environment Variables"
]
},
{
"cell_type": "markdown",
"id": "7baadc12-4748-4938-916f-0a256546c181",
"metadata": {},
"source": [
"If you want to run this locally without having to set up the environment variables in your system, you can create a file called `tts_openai_secrets.py` in the root directory with this content:\n",
"```python\n",
"import os\n",
"os.environ['OPENAI_API_KEY'] = 'sk-XXXXXXXXXXXXXXXXXXXXXX'\n",
"os.environ['CARTESIA_API_KEY'] = 'XXXXXXXXXXXXXXXXXXXXXX'\n",
"os.environ[\"ALLOWED_OAUTH_PROFILE_USERNAMES\"]= '<huggingface-username1>,<huggingface-username2>'\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "667802a7-0f36-4136-a381-e66210b20462",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"OPENAI_API_KEY environment variable was not found.\n",
"CARTESIA_API_KEY environment variable was not found.\n",
"ALLOWED_OAUTH_PROFILE_USERNAMES environment variable was not found.\n",
"import tts_openai_secrets succeeded\n"
]
}
],
"source": [
"#| export\n",
"\n",
"import os\n",
"secret_import_failed = False\n",
"try:\n",
" # don't need the openai api key in a variable\n",
" _ = os.environ['OPENAI_API_KEY']\n",
" print('OPENAI_API_KEY environment variable was found.')\n",
"except:\n",
" print('OPENAI_API_KEY environment variable was not found.')\n",
" secret_import_failed = True\n",
"try:\n",
" CARTESIA_API_KEY = os.environ['CARTESIA_API_KEY']\n",
" print('CARTESIA_API_KEY environment variable was found.')\n",
"except:\n",
" print('CARTESIA_API_KEY environment variable was not found.')\n",
" secret_import_failed = True\n",
"try:\n",
" temp_ALLOWED_OAUTH_PROFILE_USERNAMES = os.environ['ALLOWED_OAUTH_PROFILE_USERNAMES']\n",
" ALLOWED_OAUTH_PROFILE_USERNAMES = tuple([o for o in temp_ALLOWED_OAUTH_PROFILE_USERNAMES.split(',') if o not in ('','None')])\n",
" del temp_ALLOWED_OAUTH_PROFILE_USERNAMES\n",
" print(f'ALLOWED_OAUTH_PROFILE_USERNAMES environment variable was found. {ALLOWED_OAUTH_PROFILE_USERNAMES}')\n",
"except:\n",
" print('ALLOWED_OAUTH_PROFILE_USERNAMES environment variable was not found.')\n",
" secret_import_failed = True\n",
"\n",
"if secret_import_failed == True:\n",
" import tts_openai_secrets\n",
" _ = os.environ['OPENAI_API_KEY']\n",
" CARTESIA_API_KEY = os.environ['CARTESIA_API_KEY']\n",
" ALLOWED_OAUTH_PROFILE_USERNAMES = os.environ['ALLOWED_OAUTH_PROFILE_USERNAMES']\n",
" print('import tts_openai_secrets succeeded')"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "7664bc24-e8a7-440d-851d-eb16dc2d69fb",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"REQUIRE_AUTH: False\n"
]
}
],
"source": [
"#| export\n",
"# If REQUIRE_AUTH environemnt variable is set to 'false' (from secrets) and HF_SPACE != 1 then we\n",
"# are running locally and don't require authentication and authorization, otherwise we do.\n",
"# We are using paid API's so don't want anybody/everybody to be able to use our paid services.\n",
"if os.environ.get(\"REQUIRE_AUTH\",'true') == 'false' and os.environ.get('HF_SPACE',0) != 1:\n",
" REQUIRE_AUTH = False\n",
"else:\n",
" REQUIRE_AUTH = True\n",
"print('REQUIRE_AUTH:',REQUIRE_AUTH)"
]
},
{
"cell_type": "markdown",
"id": "8c978095-da2a-43f8-9729-3d845e7056f1",
"metadata": {},
"source": [
"## Imports"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "4d9863fc-969e-409b-8e20-b9c3cd2cc3e7",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"try:\n",
" import nbdev\n",
"except:\n",
" print('to convert this notebook to app.py you need to pip install nbdev')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4f486d3a",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"import os\n",
"import gradio as gr\n",
"import openai\n",
"from pydub import AudioSegment\n",
"import io\n",
"from datetime import datetime\n",
"from math import ceil\n",
"from multiprocessing.pool import ThreadPool\n",
"from functools import partial\n",
"from pathlib import Path\n",
"import uuid\n",
"from tenacity import (\n",
" retry,\n",
" stop_after_attempt,\n",
" wait_random_exponential,\n",
") # for exponential backoff\n",
"import traceback\n",
"# from cartesia.tts import CartesiaTTS\n",
"import cartesia"
]
},
{
"cell_type": "markdown",
"id": "6b425ab4-cecd-4760-84fb-b7f2cc44a565",
"metadata": {},
"source": [
"Set the Gradio TEMP directory. This will be used to save audio files that were generated prior to returning them. The reason we are doing this is because if you return a bytesio object to a Gradio audio object it will not contain the file extension and will not be playable in Safari. If you pass the file to the Gradio audio object it will contain the extension. In addition if you pass the filepath instead of bytesio path, when you download the audio it will have the correct file extenion whereas otherwise it will not."
]
},
{
"cell_type": "markdown",
"id": "852a3a1f-462a-41ab-bc94-b5ba12279ae9",
"metadata": {},
"source": [
"## App Settings/Constants"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "ecb7f207-0fc2-4d19-a313-356c05776832",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"TEMP Dir: /tmp\n"
]
}
],
"source": [
"#| export\n",
"TEMP = os.environ.get('GRADIO_TEMP_DIR','/tmp/')\n",
"TEMP_DIR = Path(TEMP)\n",
"print('TEMP Dir:', TEMP_DIR)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "e5d6cac2-0dee-42d8-9b41-184b5be9cc3f",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"providers = dict()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "b77ad8d6-3289-463c-b213-1c0cc215b141",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully added OpenAI as Provider\n"
]
}
],
"source": [
"#| export\n",
"# Add OpenAI as a provider\n",
"try:\n",
" providers['openai'] = {\n",
" 'name': 'Open AI',\n",
" 'models': {o.id: o.id for o in openai.models.list().data if 'tts' in o.id},\n",
" 'voices': {o:{'id':o,'name':o.title()} for o in ['alloy', 'echo', 'fable', 'onyx', 'nova', 'shimmer']},\n",
" }\n",
" print('Successfully added OpenAI as Provider')\n",
"except Exception as e:\n",
" print(f\"\"\"Error: Failed to add OpenAI as a provider.\\nException: {repr(e)}\\nTRACEBACK:\\n\"\"\",traceback.format_exc())\n",
"# providers"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "87fca48b-a16a-4d2b-919c-75e88e4e5eb5",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully added Cartesia AI as Provider\n"
]
}
],
"source": [
"#| export\n",
"# Add Cartesia AI as a provider\n",
"try:\n",
" providers['cartesiaai'] = {\n",
" 'name': 'Cartesia AI',\n",
" 'models': {'upbeat-moon': 'Sonic Turbo English'},\n",
" 'voices': {v['id']:v for k,v in cartesia.tts.CartesiaTTS().get_voices().items()},\n",
" }\n",
" print('Successfully added Cartesia AI as Provider')\n",
"except Exception as e:\n",
" print(f\"\"\"Error: Failed to add Cartesia AI as a provider.\\nException: {repr(e)}\\nTRACEBACK:\\n\"\"\",traceback.format_exc())\n",
"# providers"
]
},
{
"cell_type": "markdown",
"id": "6bd2e9ed-9dbd-4d5f-a814-2942108b5935",
"metadata": {},
"source": [
"EXAMPLE: providers\n",
"```python\n",
"{'openai': {'name': 'Open AI',\n",
" 'models': {'tts-1-hd-1106': 'tts-1-hd-1106',\n",
" 'tts-1-hd': 'tts-1-hd',\n",
" 'tts-1': 'tts-1',\n",
" 'tts-1-1106': 'tts-1-1106'},\n",
" 'voices': {'alloy': {'id': 'alloy', 'name': 'Alloy'},\n",
" 'echo': {'id': 'echo', 'name': 'Echo'},\n",
" 'fable': {'id': 'fable', 'name': 'Fable'},\n",
" 'onyx': {'id': 'onyx', 'name': 'Onyx'},\n",
" 'nova': {'id': 'nova', 'name': 'Nova'},\n",
" 'shimmer': {'id': 'shimmer', 'name': 'Shimmer'}}},\n",
" 'cartesiaai': {'name': 'Cartesia AI',\n",
" 'models': {'upbeat-moon': 'Sonic Turbo English'},\n",
" 'voices': {'3b554273-4299-48b9-9aaf-eefd438e3941': {'id': '3b554273-4299-48b9-9aaf-eefd438e3941',\n",
" 'user_id': None,\n",
" 'is_public': True,\n",
" 'name': 'Indian Lady',\n",
" 'description': 'This voice is young, rich, and curious, perfect for a narrator or fictional character',\n",
" 'created_at': '2024-05-04T18:48:17.006441-07:00',\n",
" 'embedding': [0.015546328,-0.11384969,0.14146514, ...]},\n",
" '63ff761f-c1e8-414b-b969-d1833d1c870c': {'id': '63ff761f-c1e8-414b-b969-d1833d1c870c',\n",
" 'user_id': None,\n",
" 'is_public': True,\n",
" 'name': 'Confident British Man',\n",
" 'description': 'This voice is disciplined with a British accent, perfect for a commanding character or narrator',\n",
" 'created_at': '2024-05-04T18:57:31.399193-07:00',\n",
" 'embedding': [-0.056990184,-0.06531749,-0.05618861,...]}\n",
" }\n",
"}\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "8eb7e7d5-7121-4762-b8d1-e5a9539e2b36",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"clean_text_prompt = \"\"\"Your job is to clean up text that is going to be fed into a text to speech (TTS) model. You must remove parts of the text that would not normally be spoken such as reference marks `[1]`, spurious citations such as `(Reddy et al., 2021; Wu et al., 2022; Chang et al., 2022; Kondratyuk et al., 2023)` and any other part of the text that is not normally spoken. Please also clean up sections and headers so they are on new lines with proper numbering. You must also clean up any math formulas that are salvageable from being copied from a scientific paper. If they are garbled and do not make sense then remove them. You must carefully perform the text cleanup so it is translated into speech that is easy to listen to however you must not modify the text otherwise. It is critical that you repeat all of the text without modifications except for the cleanup activities you've been instructed to do. Also you must clean all of the text you are given, you may not omit any of it or stop the cleanup task early.\"\"\"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "52d373be-3a79-412e-8ca2-92bb443fa52d",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"#Number of threads created PER USER REQUEST. This throttels the # of API requests PER USER request. This is in ADDITION to the Gradio threads.\n",
"OPENAI_CLIENT_TTS_THREADS = 10 \n",
"CARTESIAAI_CLIENT_TTS_THREADS = 3\n",
"\n",
"DEFAULT_PROVIDER = 'openai'\n",
"DEFAULT_MODEL = 'tts-1'\n",
"DEFAULT_VOICE = 'alloy'"
]
},
{
"cell_type": "markdown",
"id": "e6400d8e-49e8-41b8-ad0e-18bc032682b6",
"metadata": {},
"source": [
"# Main Implementation"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "b5b29507-92bc-453d-bcc5-6402c17e9a0d",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def verify_authorization(profile: gr.OAuthProfile=None) -> str:\n",
" print('Profile:', profile)\n",
" if REQUIRE_AUTH == False:\n",
" return 'WARNING_NO_AUTH_REQUIRED_LOCAL'\n",
" elif profile is not None and profile.username in ALLOWED_OAUTH_PROFILE_USERNAMES:\n",
" return f\"{profile.username}\"\n",
" else:\n",
" # print('Unauthorized',profile)\n",
" raise PermissionError(f'Your huggingface username ({profile}) is not authorized. Must be set in ALLOWED_OAUTH_PROFILE_USERNAMES environment variable.')\n",
" return None"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "24674094-4d47-4e48-b591-55faabcff8df",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def split_text(input_text, max_length=4000, lookback=1000):\n",
" # If the text is shorter than the max_length, return it as is\n",
" if len(input_text) <= max_length:\n",
" return [input_text]\n",
"\n",
" chunks = []\n",
" while input_text:\n",
" # Check if the remaining text is shorter than the max_length\n",
" if len(input_text) <= max_length:\n",
" chunks.append(input_text)\n",
" break\n",
"\n",
" # Define the split point, initially set to max_length\n",
" split_point = max_length\n",
"\n",
" # Look for a newline in the last 'lookback' characters\n",
" newline_index = input_text.rfind('\\n', max_length-lookback, max_length)\n",
" if newline_index != -1:\n",
" split_point = newline_index + 1 # Include the newline in the current chunk\n",
"\n",
" # If no newline, look for a period followed by space\n",
" elif '. ' in input_text[max_length-lookback:max_length]:\n",
" # Find the last '. ' in the lookback range\n",
" period_index = input_text.rfind('. ', max_length-lookback, max_length)\n",
" split_point = period_index + 2 # Split after the space\n",
"\n",
" # Split the text and update the input_text\n",
" chunks.append(input_text[:split_point])\n",
" input_text = input_text[split_point:]\n",
"\n",
" return chunks"
]
},
{
"cell_type": "code",
"execution_count": 14,
"id": "e6224ae5-3792-42b2-8392-3abd42998a50",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def concatenate_mp3(mp3_files:list):\n",
"\n",
" # Initialize an empty AudioSegment object for concatenation\n",
" combined = AudioSegment.empty()\n",
" \n",
" # Write out audio file responses as individual files for debugging\n",
" # for idx, mp3_data in enumerate(mp3_files):\n",
" # with open(f'./{idx}.mp3', 'wb') as f:\n",
" # f.write(mp3_data)\n",
"\n",
" # Loop through the list of mp3 binary data\n",
" for mp3_data in mp3_files:\n",
" # Convert binary data to an audio segment\n",
" audio_segment = AudioSegment.from_file(io.BytesIO(mp3_data), format=\"mp3\")\n",
" # Concatenate this segment to the combined segment\n",
" combined += audio_segment\n",
"\n",
" #### Return Bytes Method\n",
" # # Export the combined segment to a new mp3 file\n",
" # # Use a BytesIO object to handle this in memory\n",
" # combined_mp3 = io.BytesIO()\n",
" # combined.export(combined_mp3, format=\"mp3\")\n",
"\n",
" # # Seek to the start so it's ready for reading\n",
" # combined_mp3.seek(0)\n",
"\n",
" # return combined_mp3.getvalue()\n",
"\n",
" #### Return Filepath Method\n",
" filepath = TEMP_DIR/(str(uuid.uuid4())+'.mp3')\n",
" combined.export(filepath, format=\"mp3\")\n",
" print('Saving mp3 file to temp directory: ', filepath)\n",
" return str(filepath)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"id": "4691703d-ed0f-4481-8006-b2906289b780",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def create_speech_openai(chunk_idx, input, model='tts-1', voice='alloy', speed=1.0, **kwargs):\n",
" client = openai.OpenAI()\n",
" \n",
" @retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))\n",
" def _create_speech_with_backoff(**kwargs):\n",
" return client.audio.speech.create(**kwargs)\n",
" \n",
" response = _create_speech_with_backoff(input=input, model=model, voice=voice, speed=speed, **kwargs)\n",
" client.close()\n",
" return chunk_idx, response.content"
]
},
{
"cell_type": "markdown",
"id": "6b1a0a8a-0ff6-44fa-b85c-c80c56bd3a24",
"metadata": {},
"source": [
"```python\n",
"client.generate(\n",
" *,\n",
" transcript: str,\n",
" voice: List[float],\n",
" model_id: str = '',\n",
" duration: int = None,\n",
" chunk_time: float = None,\n",
" stream: bool = False,\n",
" websocket: bool = True,\n",
" output_format: Union[str, cartesia._types.AudioOutputFormat] = 'fp32',\n",
" data_rtype: str = 'bytes',\n",
") -> Union[cartesia._types.AudioOutput, Generator[cartesia._types.AudioOutput, NoneType, NoneType]]\n",
"\n",
"list(cartesia._types.AudioOutputFormat)\n",
"[<AudioOutputFormat.FP32: 'fp32'>,\n",
" <AudioOutputFormat.PCM: 'pcm'>,\n",
" <AudioOutputFormat.FP32_16000: 'fp32_16000'>,\n",
" <AudioOutputFormat.FP32_22050: 'fp32_22050'>,\n",
" <AudioOutputFormat.FP32_44100: 'fp32_44100'>,\n",
" <AudioOutputFormat.PCM_16000: 'pcm_16000'>,\n",
" <AudioOutputFormat.PCM_22050: 'pcm_22050'>,\n",
" <AudioOutputFormat.PCM_44100: 'pcm_44100'>,\n",
" <AudioOutputFormat.MULAW_8000: 'mulaw_8000'>]\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 16,
"id": "3420c868-71cb-4ac6-ac65-6f02bfd841d1",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def create_speech_cartesiaai(chunk_idx, input, model='upbeat-moon', \n",
" voice='248be419-c632-4f23-adf1-5324ed7dbf1d', #Hannah\n",
" websocket=False, output_format='pcm_44100', **kwargs):\n",
" client = cartesia.tts.CartesiaTTS()\n",
" \n",
" @retry(wait=wait_random_exponential(min=1, max=180), stop=stop_after_attempt(6))\n",
" def _create_speech_with_backoff(**kwargs):\n",
" return client.generate(**kwargs)\n",
" \n",
" response = _create_speech_with_backoff(transcript=input, model_id=model, voice=voice, \n",
" websocket=websocket, output_format=output_format, **kwargs)\n",
" client.close()\n",
" return chunk_idx, response[\"audio\"]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"id": "e34bb4aa-698c-4452-8cda-bd02b38f7122",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def create_speech(input_text, provider, model='tts-1', voice='alloy', profile: gr.OAuthProfile|None=None, progress=gr.Progress(), **kwargs):\n",
"\n",
" #Verify auth if it is required. This is very important if this is in a HF space. DO NOT DELETE!!!\n",
" verify_authorization(profile)\n",
" start = datetime.now()\n",
"\n",
" \n",
" if provider == 'cartesiaai':\n",
" create_speech_func = create_speech_cartesiaai\n",
" max_chunk_size = 500\n",
" chunk_processing_time = 20\n",
" threads = CARTESIAAI_CLIENT_TTS_THREADS\n",
" elif provider == 'openai':\n",
" create_speech_func = create_speech_openai\n",
" max_chunk_size = 4000\n",
" chunk_processing_time = 60\n",
" threads = OPENAI_CLIENT_TTS_THREADS\n",
" else:\n",
" raise ValueError(f'Invalid argument provider: {provider}')\n",
" \n",
" # Split the input text into chunks\n",
" chunks = split_text(input_text, max_length=max_chunk_size)\n",
"\n",
" # Initialize the progress bar\n",
" progress(0, desc=f\"Started processing {len(chunks)} text chunks using {threads} threads. ETA is ~{ceil(len(chunks)/threads)*chunk_processing_time/60.} min.\")\n",
"\n",
" # Initialize a list to hold the audio data of each chunk\n",
" audio_data = []\n",
"\n",
" # Process each chunk\n",
" with ThreadPool(processes=threads) as pool:\n",
" results = pool.starmap(\n",
" partial(create_speech_func, model=model, voice=voice, **kwargs), \n",
" zip(range(len(chunks)),chunks)\n",
" )\n",
" audio_data = [o[1] for o in sorted(results)]\n",
"\n",
" # Progress\n",
" progress(.9, desc=f\"Merging audio chunks... {(datetime.now()-start).seconds} seconds to process.\")\n",
" \n",
" # Concatenate the audio data from all chunks\n",
" combined_audio = concatenate_mp3(audio_data)\n",
"\n",
" # Final update to the progress bar\n",
" progress(1, desc=f\"Processing completed... {(datetime.now()-start).seconds} seconds to process.\")\n",
" \n",
" print(f\"Processing time: {(datetime.now()-start).seconds} seconds.\")\n",
"\n",
" return combined_audio\n"
]
},
{
"cell_type": "code",
"execution_count": 18,
"id": "ca2c6f8c-62ed-4ac1-9c2f-e3b2bfb47e8d",
"metadata": {},
"outputs": [],
"source": [
"# create_speech(\"Hi. What's your name?\", provider='openai', model='tts-1', voice='alloy')"
]
},
{
"cell_type": "code",
"execution_count": 19,
"id": "236dd8d3-4364-4731-af93-7dcdec6f18a1",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_input_text_len(input_text):\n",
" return len(input_text)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "0523a158-ee07-48b3-9350-ee39d4deee7f",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_generation_cost(input_text, tts_model_dropdown, provider):\n",
" text_len = len(input_text)\n",
" if provider == 'openai':\n",
" if tts_model_dropdown.endswith('-hd'):\n",
" cost = text_len/1000 * 0.03\n",
" else:\n",
" cost = text_len/1000 * 0.015\n",
" elif provider == 'cartesiaai':\n",
" cost = text_len/1000 * 0.065\n",
" else:\n",
" raise ValueError(f'Invalid argument provider: {provider}')\n",
" return \"${:,.3f}\".format(cost)"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "f4d1ba0b-6960-4e22-8dba-7de70370753a",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_model_choices(provider):\n",
" return sorted([(v,k) for k,v in providers[provider]['models'].items()])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"id": "efa28cf2-548d-439f-bf2a-21a5edbf9eba",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def update_model_choices(provider):\n",
" choices = get_model_choices(provider)\n",
" return gr.update(choices=choices,value=choices[0])"
]
},
{
"cell_type": "code",
"execution_count": 23,
"id": "cdc1dde5-5edd-4dbf-bd11-30eb418c571d",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def get_voice_choices(provider, model):\n",
" return sorted([(v['name'],v['id']) for v in providers[provider]['voices'].values()])"
]
},
{
"cell_type": "code",
"execution_count": 24,
"id": "035c33dd-c8e6-42b4-91d4-6bc5f1b36df3",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"def update_voice_choices(provider, model):\n",
" choices = get_voice_choices(provider, model)\n",
" return gr.update(choices=choices,value=choices[0])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"id": "e4fb3159-579b-4271-bc96-4cd1e2816eca",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"with gr.Blocks(title='TTS', head='TTS', delete_cache=(3600,3600)) as app:\n",
" gr.Markdown(\"# TTS\")\n",
" gr.Markdown(\"\"\"Start typing below and then click **Go** to create the speech from your text.\n",
"For requests longer than allowed by the API they will be broken into chunks automatically. [Spaces Link](https://matdmiller-tts-openai.hf.space/) | <a href=\"https://matdmiller-tts-openai.hf.space/\" target=\"_blank\">Spaces Link HTML</a>\"\"\")\n",
" with gr.Row():\n",
" input_text = gr.Textbox(max_lines=100, label=\"Enter text here\")\n",
" with gr.Row():\n",
" tts_provider_dropdown = gr.Dropdown(value=DEFAULT_PROVIDER,\n",
" choices=tuple([(v['name'],k) for k,v in providers.items()]), label='Provider', interactive=True)\n",
" tts_model_dropdown = gr.Dropdown(value=DEFAULT_MODEL,choices=get_model_choices(DEFAULT_PROVIDER), \n",
" label='Model', interactive=True)\n",
" tts_voice_dropdown = gr.Dropdown(value=DEFAULT_VOICE,choices=get_voice_choices(DEFAULT_PROVIDER, DEFAULT_MODEL),\n",
" label='Voice', interactive=True)\n",
" input_text_length = gr.Label(label=\"Number of characters\")\n",
" generation_cost = gr.Label(label=\"Generation cost\")\n",
" with gr.Row():\n",
" output_audio = gr.Audio()\n",
"\n",
" #input_text \n",
" input_text.input(fn=get_input_text_len, inputs=input_text, outputs=input_text_length)\n",
" input_text.input(fn=get_generation_cost, \n",
" inputs=[input_text,tts_model_dropdown,tts_provider_dropdown], \n",
" outputs=generation_cost)\n",
"\n",
" tts_provider_dropdown.change(fn=update_model_choices, inputs=[tts_provider_dropdown], \n",
" outputs=tts_model_dropdown)\n",
" tts_provider_dropdown.change(fn=update_voice_choices, inputs=[tts_provider_dropdown, tts_model_dropdown], \n",
" outputs=tts_voice_dropdown)\n",
" \n",
" tts_model_dropdown.change(fn=get_generation_cost, \n",
" inputs=[input_text,tts_model_dropdown,tts_provider_dropdown], outputs=generation_cost)\n",
" \n",
" go_btn = gr.Button(\"Go\")\n",
" go_btn.click(fn=create_speech, \n",
" inputs=[input_text, tts_provider_dropdown, tts_model_dropdown, tts_voice_dropdown], \n",
" outputs=[output_audio])\n",
" \n",
" clear_btn = gr.Button('Clear')\n",
" clear_btn.click(fn=lambda: '', outputs=input_text)\n",
"\n",
" if REQUIRE_AUTH:\n",
" gr.LoginButton()\n",
" m = gr.Markdown('')\n",
" app.load(verify_authorization, None, m)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 30,
"id": "a00648a1-891b-470b-9959-f5d502055713",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"# launch_kwargs = {'auth':('username',GRADIO_PASSWORD),\n",
"# 'auth_message':'Please log in to Mat\\'s TTS App with username: username and password.'}\n",
"launch_kwargs = {}\n",
"queue_kwargs = {'default_concurrency_limit':10}"
]
},
{
"cell_type": "code",
"execution_count": 31,
"id": "4b534fe7-4337-423e-846a-1bdb7cccc4ea",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Running on local URL: http://127.0.0.1:7860\n",
"\n",
"To create a public link, set `share=True` in `launch()`.\n"
]
},
{
"data": {
"text/html": [
"<div><iframe src=\"http://127.0.0.1:7860/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": []
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/components/dropdown.py:181: UserWarning: The value passed into gr.Dropdown() is not in the list of choices. Please update the list of choices to include: $0.000 or set allow_custom_value=True.\n",
" warnings.warn(\n",
"Traceback (most recent call last):\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/queueing.py\", line 532, in process_events\n",
" response = await route_utils.call_process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/route_utils.py\", line 276, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/blocks.py\", line 1928, in process_api\n",
" result = await self.call_function(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/blocks.py\", line 1500, in call_function\n",
" processed_input, progress_index, _ = special_args(\n",
" ^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/helpers.py\", line 891, in special_args\n",
" getattr(request, \"session\", {})\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/route_utils.py\", line 158, in __getattr__\n",
" return self.dict_to_obj(getattr(self.request, name))\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/starlette/requests.py\", line 157, in session\n",
" \"session\" in self.scope\n",
"AssertionError: SessionMiddleware must be installed to access request.session\n",
"Traceback (most recent call last):\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/queueing.py\", line 532, in process_events\n",
" response = await route_utils.call_process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/route_utils.py\", line 276, in call_process_api\n",
" output = await app.get_blocks().process_api(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/blocks.py\", line 1928, in process_api\n",
" result = await self.call_function(\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/blocks.py\", line 1500, in call_function\n",
" processed_input, progress_index, _ = special_args(\n",
" ^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/helpers.py\", line 891, in special_args\n",
" getattr(request, \"session\", {})\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/gradio/route_utils.py\", line 158, in __getattr__\n",
" return self.dict_to_obj(getattr(self.request, name))\n",
" ^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
" File \"/Users/mathewmiller/anaconda3/envs/gradio1/lib/python3.11/site-packages/starlette/requests.py\", line 157, in session\n",
" \"session\" in self.scope\n",
"AssertionError: SessionMiddleware must be installed to access request.session\n"
]
}
],
"source": [
"#| hide\n",
"#Notebook launch\n",
"app.queue(**queue_kwargs)\n",
"app.launch(**launch_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cb886d45",
"metadata": {},
"outputs": [],
"source": [
"#| export\n",
"#.py launch\n",
"if __name__ == \"__main__\":\n",
" app.queue(**queue_kwargs)\n",
" app.launch(**launch_kwargs)"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "28e8d888-e790-46fa-bbac-4511b9ab796c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Closing server running on port: 7860\n"
]
}
],
"source": [
"#| hide\n",
"app.close()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"id": "afbc9699-4d16-4060-88f4-cd1251754cbd",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"gr.close_all()"
]
},
{
"cell_type": "code",
"execution_count": 38,
"id": "0420310d-930b-4904-8bd4-3458ad8bdbd3",
"metadata": {},
"outputs": [],
"source": [
"#| hide\n",
"nbdev.export.nb_export('app.ipynb',lib_path='.')"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9869749d-bc7c-4e24-9dbc-403f665d6200",
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "4b4fe405-b58a-471f-9ce9-e52104012409",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "gradio1",
"language": "python",
"name": "gradio1"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.8"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|