import gradio as gr import requests import time import json import base64 import os from io import BytesIO import html import re from PIL import Image # Убедитесь, что PIL импортируется для работы с изображениями class Prodia: def __init__(self, api_key, base=None): self.base = base or "https://api.prodia.com/v1" self.headers = { "X-Prodia-Key": api_key } def generate(self, params): return self._post(f"{self.base}/sd/generate", params).json() def transform(self, params): return self._post(f"{self.base}/sd/transform", params).json() def controlnet(self, params): return self._post(f"{self.base}/sd/controlnet", params).json() def get_job(self, job_id): return self._get(f"{self.base}/job/{job_id}").json() def wait(self, job): job_result = job while job_result['status'] not in ['succeeded', 'failed']: time.sleep(0.25) job_result = self.get_job(job['job']) return job_result def list_models(self): return self._get(f"{self.base}/sd/models").json() def list_samplers(self): return self._get(f"{self.base}/sd/samplers").json() # Изменение: добавлены повторные попытки при сбоях сети def _post(self, url, params): headers = {**self.headers, "Content-Type": "application/json"} for _ in range(3): try: response = requests.post(url, headers=headers, data=json.dumps(params)) response.raise_for_status() return response except requests.exceptions.RequestException as e: print(f"Request failed: {e}, retrying...") time.sleep(1) raise Exception("Failed after 3 attempts") # Изменение: добавлены повторные попытки при сбоях сети def _get(self, url): for _ in range(3): try: response = requests.get(url, headers=self.headers) response.raise_for_status() return response except requests.exceptions.RequestException as e: print(f"Request failed: {e}, retrying...") time.sleep(1) raise Exception("Failed after 3 attempts") def image_to_base64(image, format="PNG"): buffered = BytesIO() image.save(buffered, format=format) img_str = base64.b64encode(buffered.getvalue()).decode('utf-8') return img_str def remove_id_and_ext(text): text = re.sub(r'\[.*\]$', '', text) extension = text[-12:].strip() if extension == "safetensors": text = text[:-13] elif extension == "ckpt": text = text[:-4] return text # Изменение: оптимизация функции get_data def get_data(text): patterns = { 'prompt': r'(.*)', 'negative_prompt': r'Negative prompt: (.*)', 'steps': r'Steps: (\d+),', 'seed': r'Seed: (\d+),', 'sampler': r'Sampler:\s*([^\s,]+(?:\s+[^\s,]+)*)', 'model': r'Model:\s*([^\s,]+)', 'cfg_scale': r'CFG scale:\s*([\d\.]+)', 'size': r'Size:\s*([0-9]+x[0-9]+)' } results = {key: re.search(pattern, text).group(1) if re.search(pattern, text) else None for key, pattern in patterns.items()} if results['size']: results['w'], results['h'] = map(int, results['size'].split("x")) else: results['w'], results['h'] = None, None return results # Изменение: оптимизация функции send_to_txt2img def send_to_txt2img(image): result = {tabs: gr.update(selected="t2i")} try: text = image.info['parameters'] data = get_data(text) fields = ['prompt', 'negative_prompt', 'steps', 'seed', 'cfg_scale', 'w', 'h', 'sampler', 'model'] for field in fields: result[field] = gr.update(value=data[field]) if data[field] is not None else gr.update() return result except Exception as e: print(e) return result prodia_client = Prodia(api_key=os.getenv("PRODIA_API_KEY")) model_list = prodia_client.list_models() model_names = {remove_id_and_ext(model_name): model_name for model_name in model_list} def txt2img(prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed): result = prodia_client.generate({ "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed }) job = prodia_client.wait(result) return job["imageUrl"] def img2img(input_image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed): result = prodia_client.transform({ "imageData": image_to_base64(input_image), "denoising_strength": denoising, "prompt": prompt, "negative_prompt": negative_prompt, "model": model, "steps": steps, "sampler": sampler, "cfg_scale": cfg_scale, "width": width, "height": height, "seed": seed }) job = prodia_client.wait(result) return job["imageUrl"] css = """ #generate { height: 100%; } """ with gr.Blocks(css=css) as demo: with gr.Row(): with gr.Column(scale=6): model = gr.Dropdown(interactive=True, value="childrensStories_v1ToonAnime.safetensors [2ec7b88b]", show_label=True, label="Stable Diffusion Checkpoint", choices=prodia_client.list_models()) with gr.Column(scale=1): gr.Markdown(elem_id="powered-by-prodia", value="AUTOMATIC1111 Stable Diffusion Web UI переделано masteroko.
Powered by [Prodia](https://prodia.com).
For more features and faster generation times check out our [API Docs](https://docs.prodia.com/reference/getting-started-guide).") with gr.Tabs() as tabs: with gr.Tab("txt2img", id='t2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): prompt = gr.Textbox("nsfw", placeholder="Prompt", show_label=False, lines=3) negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3, value="3d, cartoon, anime, (deformed eyes, nose, ears, nose), bad anatomy, ugly") with gr.Column(): text_button = gr.Button("Сгенерировать", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Генерация"): with gr.Row(): with gr.Column(scale=1): sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1) with gr.Row(): with gr.Column(scale=1): width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8) height = gr.Slider(label="Высота", maximum=1024, value=512, step=8) with gr.Column(scale=1): batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1) seed = gr.Number(label="Семя рандома", value=-1) with gr.Column(scale=2): image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png") # Изменение: добавлен limit на одновременные запросы text_button.click(txt2img, inputs=[prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024) with gr.Tab("img2img", id='i2i'): with gr.Row(): with gr.Column(scale=6, min_width=600): image = gr.Image(show_label=False) prompt = gr.Textbox(placeholder="Prompt", show_label=False, lines=3) negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=False, lines=3) with gr.Column(): text_button = gr.Button("Трансформировать", variant='primary', elem_id="generate") with gr.Row(): with gr.Column(scale=3): with gr.Tab("Генерация"): with gr.Row(): with gr.Column(scale=1): sampler = gr.Dropdown(value="DPM++ 2M SDE Exponential", show_label=True, label="Sampling Method", choices=prodia_client.list_samplers()) with gr.Column(scale=1): steps = gr.Slider(label="количество обработок", minimum=1, maximum=100, value=20, step=1) with gr.Row(): with gr.Column(scale=1): width = gr.Slider(label="Ширина", maximum=1024, value=512, step=8) height = gr.Slider(label="Высота", maximum=1024, value=512, step=8) with gr.Column(scale=1): batch_size = gr.Slider(label="Batch Size", maximum=1, value=1) batch_count = gr.Slider(label="Batch Count", maximum=1, value=1) cfg_scale = gr.Slider(label="CFG Scale(степень фантазии ии)", minimum=1, maximum=20, value=7, step=1) seed = gr.Number(label="Семя рандома", value=-1) denoising = gr.Slider(label="Denoising", value=0.5) with gr.Column(scale=2): image_output = gr.Image(value="https://images.prodia.xyz/8ede1a7c-c0ee-4ded-987d-6ffed35fc477.png") # Изменение: добавлен limit на одновременные запросы text_button.click(img2img, inputs=[image, denoising, prompt, negative_prompt, model, steps, sampler, cfg_scale, width, height, seed], outputs=image_output, concurrency_limit=1024) # Запуск Gradio интерфейса demo.launch()