Spaces:
Running
Running
import os | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
import gradio as gr | |
from scipy.io.wavfile import write | |
import torch | |
from utils import convert_to_stereo_and_wav | |
from uvr_processing import get_model_params, run_mdx | |
MODEL_ID = "masszhou/mdxnet" | |
MODELS_PATH = { | |
"bgm": Path(hf_hub_download(repo_id=MODEL_ID, filename="UVR-MDX-NET-Inst_HQ_3.onnx")), | |
"basic_vocal": Path(hf_hub_download(repo_id=MODEL_ID, filename="UVR-MDX-NET-Voc_FT.onnx")), | |
"main_vocal": Path(hf_hub_download(repo_id=MODEL_ID, filename="UVR_MDXNET_KARA_2.onnx")) | |
} | |
def inference_mdx(audio_file: str) -> list[str]: | |
mdx_model_params = get_model_params(Path("./mdx_models")) | |
audio_file = convert_to_stereo_and_wav(Path(audio_file)) # resampling at 44100 Hz | |
device_base = "cuda" if torch.cuda.is_available() else "cpu" | |
output_dir = Path("./out/mdx") | |
os.makedirs(output_dir, exist_ok=True) | |
model_bgm_path = MODELS_PATH["bgm"] | |
background_path, vocal_path = run_mdx(model_params=mdx_model_params, | |
input_filename=audio_file, | |
output_dir=output_dir, | |
model_path=model_bgm_path, | |
denoise=False, | |
device_base=device_base, | |
) | |
return str(vocal_path), str(background_path) | |
def inference_demucs(audio): | |
sr = audio[0] | |
audio_np = audio[1] | |
os.makedirs("out", exist_ok=True) | |
write('test.wav', audio[0], audio[1]) | |
os.system("python3 -m demucs.separate -n htdemucs --two-stems=vocals test.wav -o out") | |
return "./out/htdemucs/test/vocals.wav","./out/htdemucs/test/no_vocals.wav" | |
if __name__ == "__main__": | |
tab_1 = gr.Interface( | |
fn = inference_demucs, | |
inputs = gr.Audio(type="numpy", label="Input"), | |
outputs = [gr.Audio(type="filepath", label="Vocals"),gr.Audio(type="filepath", label="BGM")], | |
title="Demucs Music Source Separation (v4)", | |
article="<p style='text-align: center'><a href='https://arxiv.org/abs/1911.13254' target='_blank'>Music Source Separation in the Waveform Domain</a> | <a href='https://github.com/facebookresearch/demucs' target='_blank'>Github Repo</a> | <a href='https://github.com/facebookresearch/demucs/blob/main/LICENSE' target='_blank'>MIT License</a></p>", | |
api_name="demucs_separation", | |
) | |
tab_2 = gr.Interface( | |
fn = inference_mdx, | |
inputs = gr.Audio(type="filepath", label="Input"), | |
outputs = [gr.Audio(type="filepath", label="Vocals"),gr.Audio(type="filepath", label="BGM")], | |
title="MDXNET Music Source Separation", | |
article="<p style='text-align: center'><a href='https://arxiv.org/abs/2111.12203' target='_blank'>KUIELab-MDX-Net: A Two-Stream Neural Network for Music Demixing</a> | <a href='https://github.com/kuielab/mdx-net' target='_blank'>Github Repo</a> | <a href='https://github.com/kuielab/mdx-net/blob/main/LICENSE' target='_blank'>MIT License</a></p>", | |
api_name="mdxnet_separation", | |
) | |
demo = gr.TabbedInterface([tab_1, tab_2], ["Demucs", "MDXNET"]) | |
demo.launch() |