import matplotlib matplotlib.use('Agg') import math import torch import copy import time from torch.autograd import Variable import shutil from skimage import io import numpy as np from utils.utils import fan_NME, show_landmarks, get_preds_fromhm from PIL import Image, ImageDraw import os import sys import cv2 import matplotlib.pyplot as plt device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") def eval_model(model, dataloaders, dataset_sizes, writer, use_gpu=True, epoches=5, dataset='val', save_path='./', num_landmarks=68): global_nme = 0 model.eval() for epoch in range(epoches): running_loss = 0 step = 0 total_nme = 0 total_count = 0 fail_count = 0 nmes = [] # running_corrects = 0 # Iterate over data. with torch.no_grad(): for data in dataloaders[dataset]: total_runtime = 0 run_count = 0 step_start = time.time() step += 1 # get the inputs inputs = data['image'].type(torch.FloatTensor) labels_heatmap = data['heatmap'].type(torch.FloatTensor) labels_boundary = data['boundary'].type(torch.FloatTensor) landmarks = data['landmarks'].type(torch.FloatTensor) loss_weight_map = data['weight_map'].type(torch.FloatTensor) # wrap them in Variable if use_gpu: inputs = inputs.to(device) labels_heatmap = labels_heatmap.to(device) labels_boundary = labels_boundary.to(device) loss_weight_map = loss_weight_map.to(device) else: inputs, labels_heatmap = Variable(inputs), Variable(labels_heatmap) labels_boundary = Variable(labels_boundary) labels = torch.cat((labels_heatmap, labels_boundary), 1) single_start = time.time() outputs, boundary_channels = model(inputs) single_end = time.time() total_runtime += time.time() - single_start run_count += 1 step_end = time.time() for i in range(inputs.shape[0]): print(inputs.shape) img = inputs[i] img = img.cpu().numpy() img = img.transpose((1, 2, 0)) #*255.0 # img = img.astype(np.uint8) # img = Image.fromarray(img) # pred_heatmap = outputs[-1][i].detach().cpu()[:-1, :, :] pred_heatmap = outputs[-1][:, :-1, :, :][i].detach().cpu() pred_landmarks, _ = get_preds_fromhm(pred_heatmap.unsqueeze(0)) pred_landmarks = pred_landmarks.squeeze().numpy() gt_landmarks = data['landmarks'][i].numpy() print(pred_landmarks, gt_landmarks) import cv2 while(True): imgshow = vis_landmark_on_img(cv2.UMat(img), pred_landmarks*4) cv2.imshow('img', imgshow) if(cv2.waitKey(10) == ord('q')): break if num_landmarks == 68: left_eye = np.average(gt_landmarks[36:42], axis=0) right_eye = np.average(gt_landmarks[42:48], axis=0) norm_factor = np.linalg.norm(left_eye - right_eye) # norm_factor = np.linalg.norm(gt_landmarks[36]- gt_landmarks[45]) elif num_landmarks == 98: norm_factor = np.linalg.norm(gt_landmarks[60]- gt_landmarks[72]) elif num_landmarks == 19: left, top = gt_landmarks[-2, :] right, bottom = gt_landmarks[-1, :] norm_factor = math.sqrt(abs(right - left)*abs(top-bottom)) gt_landmarks = gt_landmarks[:-2, :] elif num_landmarks == 29: # norm_factor = np.linalg.norm(gt_landmarks[8]- gt_landmarks[9]) norm_factor = np.linalg.norm(gt_landmarks[16]- gt_landmarks[17]) single_nme = (np.sum(np.linalg.norm(pred_landmarks*4 - gt_landmarks, axis=1)) / pred_landmarks.shape[0]) / norm_factor nmes.append(single_nme) total_count += 1 if single_nme > 0.1: fail_count += 1 if step % 10 == 0: print('Step {} Time: {:.6f} Input Mean: {:.6f} Output Mean: {:.6f}'.format( step, step_end - step_start, torch.mean(labels), torch.mean(outputs[0]))) # gt_landmarks = landmarks.numpy() # pred_heatmap = outputs[-1].to('cpu').numpy() gt_landmarks = landmarks batch_nme = fan_NME(outputs[-1][:, :-1, :, :].detach().cpu(), gt_landmarks, num_landmarks) # batch_nme = 0 total_nme += batch_nme epoch_nme = total_nme / dataset_sizes['val'] global_nme += epoch_nme nme_save_path = os.path.join(save_path, 'nme_log.npy') np.save(nme_save_path, np.array(nmes)) print('NME: {:.6f} Failure Rate: {:.6f} Total Count: {:.6f} Fail Count: {:.6f}'.format(epoch_nme, fail_count/total_count, total_count, fail_count)) print('Evaluation done! Average NME: {:.6f}'.format(global_nme/epoches)) print('Everage runtime for a single batch: {:.6f}'.format(total_runtime/run_count)) return model def vis_landmark_on_img(img, shape, linewidth=2): ''' Visualize landmark on images. ''' def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth): for i in idx_list: cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth) if (loop): cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]), (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth) draw_curve(list(range(0, 32))) # jaw draw_curve(list(range(33, 41)), color=(0, 0, 255), loop=True) # eye brow draw_curve(list(range(42, 50)), color=(0, 0, 255), loop=True) draw_curve(list(range(51, 59))) # nose draw_curve(list(range(60, 67)), loop=True) # eyes draw_curve(list(range(68, 75)), loop=True) draw_curve(list(range(76, 87)), loop=True, color=(0, 255, 255)) # mouth draw_curve(list(range(88, 95)), loop=True, color=(255, 255, 0)) return img