""" # Copyright 2020 Adobe # All Rights Reserved. # NOTICE: Adobe permits you to use, modify, and distribute this file in # accordance with the terms of the Adobe license agreement accompanying # it. """ import os, glob, time, sys from src.dataset.utils.Av2Flau_Convertor import Av2Flau_Convertor out_dir = r'/mnt/nfs/scratch1/yangzhou/PreprocessedVox_imagetranslation' src_dir = r'/mnt/nfs/scratch1/yangzhou/vox_p3/train' ''' Step 1. Data preparation ''' # landmark extraction # landmark_extraction(int(sys.argv[1]), int(sys.argv[2])) def landmark_extraction(si, ei): ''' :param si: start index :param ei: end index :return: save extracted landmarks to out_dir ''' for folder_name in ['raw_wav', 'raw_fl3d', 'register_fl3d', 'dump', 'tmp_v', 'nn_result', 'ckpt', 'log']: try: os.mkdir(os.path.join(out_dir, folder_name)) except: pass if(not os.path.isfile(os.path.join(out_dir, 'filename_index.txt'))): # generate all file list files = glob.glob1(src_dir, '*.mp4') with open(os.path.join(out_dir, 'filename_index.txt'), 'w') as f: for i, file in enumerate(files): f.write('{} {}\n'.format(i, file)) else: with open(os.path.join(out_dir, 'filename_index.txt'), 'r') as f: lines = f.readlines() print(sys.argv) for line in lines[si:ei]: st = time.time() idx, file = int(line.split(' ')[0]), line.split(' ')[1][:-1] c = Av2Flau_Convertor(video_dir=os.path.join(src_dir, file), out_dir=out_dir, idx=idx) c.convert(show=False) # (save_audio=False, register=False, show=False) print('Idx: {}, Processed time (min): {}'.format(idx, (time.time() - st) / 60.0))