marlenezw's picture
fixing merge conflicts.
3015ca6
raw
history blame
8.09 kB
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from thirdparty.AdaptiveWingLoss.core.coord_conv import CoordConvTh
def conv3x3(in_planes, out_planes, strd=1, padding=1,
bias=False,dilation=1):
"3x3 convolution with padding"
return nn.Conv2d(in_planes, out_planes, kernel_size=3,
stride=strd, padding=padding, bias=bias,
dilation=dilation)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
# self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
# self.bn2 = nn.BatchNorm2d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
# out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
# out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ConvBlock(nn.Module):
def __init__(self, in_planes, out_planes):
super(ConvBlock, self).__init__()
self.bn1 = nn.BatchNorm2d(in_planes)
self.conv1 = conv3x3(in_planes, int(out_planes / 2))
self.bn2 = nn.BatchNorm2d(int(out_planes / 2))
self.conv2 = conv3x3(int(out_planes / 2), int(out_planes / 4),
padding=1, dilation=1)
self.bn3 = nn.BatchNorm2d(int(out_planes / 4))
self.conv3 = conv3x3(int(out_planes / 4), int(out_planes / 4),
padding=1, dilation=1)
if in_planes != out_planes:
self.downsample = nn.Sequential(
nn.BatchNorm2d(in_planes),
nn.ReLU(True),
nn.Conv2d(in_planes, out_planes,
kernel_size=1, stride=1, bias=False),
)
else:
self.downsample = None
def forward(self, x):
residual = x
out1 = self.bn1(x)
out1 = F.relu(out1, True)
out1 = self.conv1(out1)
out2 = self.bn2(out1)
out2 = F.relu(out2, True)
out2 = self.conv2(out2)
out3 = self.bn3(out2)
out3 = F.relu(out3, True)
out3 = self.conv3(out3)
out3 = torch.cat((out1, out2, out3), 1)
if self.downsample is not None:
residual = self.downsample(residual)
out3 += residual
return out3
class HourGlass(nn.Module):
def __init__(self, num_modules, depth, num_features, first_one=False):
super(HourGlass, self).__init__()
self.num_modules = num_modules
self.depth = depth
self.features = num_features
self.coordconv = CoordConvTh(x_dim=64, y_dim=64,
with_r=True, with_boundary=True,
in_channels=256, first_one=first_one,
out_channels=256,
kernel_size=1,
stride=1, padding=0)
self._generate_network(self.depth)
def _generate_network(self, level):
self.add_module('b1_' + str(level), ConvBlock(256, 256))
self.add_module('b2_' + str(level), ConvBlock(256, 256))
if level > 1:
self._generate_network(level - 1)
else:
self.add_module('b2_plus_' + str(level), ConvBlock(256, 256))
self.add_module('b3_' + str(level), ConvBlock(256, 256))
def _forward(self, level, inp):
# Upper branch
up1 = inp
up1 = self._modules['b1_' + str(level)](up1)
# Lower branch
low1 = F.avg_pool2d(inp, 2, stride=2)
low1 = self._modules['b2_' + str(level)](low1)
if level > 1:
low2 = self._forward(level - 1, low1)
else:
low2 = low1
low2 = self._modules['b2_plus_' + str(level)](low2)
low3 = low2
low3 = self._modules['b3_' + str(level)](low3)
up2 = F.upsample(low3, scale_factor=2, mode='nearest')
return up1 + up2
def forward(self, x, heatmap):
x, last_channel = self.coordconv(x, heatmap)
return self._forward(self.depth, x), last_channel
class FAN(nn.Module):
def __init__(self, num_modules=1, end_relu=False, gray_scale=False,
num_landmarks=68):
super(FAN, self).__init__()
self.num_modules = num_modules
self.gray_scale = gray_scale
self.end_relu = end_relu
self.num_landmarks = num_landmarks
# Base part
if self.gray_scale:
self.conv1 = CoordConvTh(x_dim=256, y_dim=256,
with_r=True, with_boundary=False,
in_channels=3, out_channels=64,
kernel_size=7,
stride=2, padding=3)
else:
self.conv1 = CoordConvTh(x_dim=256, y_dim=256,
with_r=True, with_boundary=False,
in_channels=3, out_channels=64,
kernel_size=7,
stride=2, padding=3)
self.bn1 = nn.BatchNorm2d(64)
self.conv2 = ConvBlock(64, 128)
self.conv3 = ConvBlock(128, 128)
self.conv4 = ConvBlock(128, 256)
# Stacking part
for hg_module in range(self.num_modules):
if hg_module == 0:
first_one = True
else:
first_one = False
self.add_module('m' + str(hg_module), HourGlass(1, 4, 256,
first_one))
self.add_module('top_m_' + str(hg_module), ConvBlock(256, 256))
self.add_module('conv_last' + str(hg_module),
nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('bn_end' + str(hg_module), nn.BatchNorm2d(256))
self.add_module('l' + str(hg_module), nn.Conv2d(256,
num_landmarks+1, kernel_size=1, stride=1, padding=0))
if hg_module < self.num_modules - 1:
self.add_module(
'bl' + str(hg_module), nn.Conv2d(256, 256, kernel_size=1, stride=1, padding=0))
self.add_module('al' + str(hg_module), nn.Conv2d(num_landmarks+1,
256, kernel_size=1, stride=1, padding=0))
def forward(self, x):
x, _ = self.conv1(x)
x = F.relu(self.bn1(x), True)
# x = F.relu(self.bn1(self.conv1(x)), True)
x = F.avg_pool2d(self.conv2(x), 2, stride=2)
x = self.conv3(x)
x = self.conv4(x)
previous = x
outputs = []
boundary_channels = []
tmp_out = None
for i in range(self.num_modules):
hg, boundary_channel = self._modules['m' + str(i)](previous,
tmp_out)
ll = hg
ll = self._modules['top_m_' + str(i)](ll)
ll = F.relu(self._modules['bn_end' + str(i)]
(self._modules['conv_last' + str(i)](ll)), True)
# Predict heatmaps
tmp_out = self._modules['l' + str(i)](ll)
if self.end_relu:
tmp_out = F.relu(tmp_out) # HACK: Added relu
outputs.append(tmp_out)
boundary_channels.append(boundary_channel)
if i < self.num_modules - 1:
ll = self._modules['bl' + str(i)](ll)
tmp_out_ = self._modules['al' + str(i)](tmp_out)
previous = previous + ll + tmp_out_
return outputs, boundary_channels