Spaces:
Sleeping
Sleeping
""" | |
# Copyright 2020 Adobe | |
# All Rights Reserved. | |
# NOTICE: Adobe permits you to use, modify, and distribute this file in | |
# accordance with the terms of the Adobe license agreement accompanying | |
# it. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.parallel | |
import torch.utils.data | |
import math | |
import torch.nn.functional as F | |
import copy | |
import numpy as np | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
AUDIO_FEAT_SIZE = 161 | |
FACE_ID_FEAT_SIZE = 204 | |
EPSILON = 1e-40 | |
class Embedder(nn.Module): | |
def __init__(self, feat_size, d_model): | |
super().__init__() | |
self.embed = nn.Linear(feat_size, d_model) | |
def forward(self, x): | |
return self.embed(x) | |
class PositionalEncoder(nn.Module): | |
def __init__(self, d_model, max_seq_len=512): | |
super().__init__() | |
self.d_model = d_model | |
# create constant 'pe' matrix with values dependant on | |
# pos and i | |
pe = torch.zeros(max_seq_len, d_model) | |
for pos in range(max_seq_len): | |
for i in range(0, d_model, 2): | |
pe[pos, i] = \ | |
math.sin(pos / (10000 ** ((2 * i) / d_model))) | |
pe[pos, i + 1] = \ | |
math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model))) | |
pe = pe.unsqueeze(0) | |
self.register_buffer('pe', pe) | |
def forward(self, x): | |
# make embeddings relatively larger | |
x = x * math.sqrt(self.d_model) | |
# add constant to embedding | |
seq_len = x.size(1) | |
x = x + self.pe[:, :seq_len].clone().detach().to(device) | |
return x | |
def attention(q, k, v, d_k, mask=None, dropout=None): | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k) | |
if mask is not None: | |
mask = mask.unsqueeze(1) | |
scores = scores.masked_fill(mask == 0, -1e9) | |
scores = F.softmax(scores, dim=-1) | |
if dropout is not None: | |
scores = dropout(scores) | |
output = torch.matmul(scores, v) | |
return output | |
class MultiHeadAttention(nn.Module): | |
def __init__(self, heads, d_model, dropout=0.1): | |
super().__init__() | |
self.d_model = d_model | |
self.d_k = d_model // heads | |
self.h = heads | |
self.q_linear = nn.Linear(d_model, d_model) | |
self.v_linear = nn.Linear(d_model, d_model) | |
self.k_linear = nn.Linear(d_model, d_model) | |
self.dropout = nn.Dropout(dropout) | |
self.out = nn.Linear(d_model, d_model) | |
def forward(self, q, k, v, mask=None): | |
bs = q.size(0) | |
# perform linear operation and split into h heads | |
k = self.k_linear(k).view(bs, -1, self.h, self.d_k) | |
q = self.q_linear(q).view(bs, -1, self.h, self.d_k) | |
v = self.v_linear(v).view(bs, -1, self.h, self.d_k) | |
# transpose to get dimensions bs * h * sl * d_model | |
k = k.transpose(1, 2) | |
q = q.transpose(1, 2) | |
v = v.transpose(1, 2) | |
# calculate attention using function we will define next | |
scores = attention(q, k, v, self.d_k, mask, self.dropout) | |
# concatenate heads and put through final linear layer | |
concat = scores.transpose(1, 2).contiguous() \ | |
.view(bs, -1, self.d_model) | |
output = self.out(concat) | |
return output | |
class FeedForward(nn.Module): | |
def __init__(self, d_model, d_ff=2048, dropout = 0.1): | |
super().__init__() | |
# We set d_ff as a default to 2048 | |
self.linear_1 = nn.Linear(d_model, d_ff) | |
self.dropout = nn.Dropout(dropout) | |
self.linear_2 = nn.Linear(d_ff, d_model) | |
def forward(self, x): | |
x = self.dropout(F.relu(self.linear_1(x))) | |
x = self.linear_2(x) | |
return x | |
class Norm(nn.Module): | |
def __init__(self, d_model, eps=1e-6): | |
super().__init__() | |
self.size = d_model | |
# create two learnable parameters to calibrate normalisation | |
self.alpha = nn.Parameter(torch.ones(self.size)) | |
self.bias = nn.Parameter(torch.zeros(self.size)) | |
self.eps = eps | |
def forward(self, x): | |
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \ | |
/ (x.std(dim=-1, keepdim=True) + self.eps) + self.bias | |
return norm | |
# build an encoder layer with one multi-head attention layer and one # feed-forward layer | |
class EncoderLayer(nn.Module): | |
def __init__(self, d_model, heads, dropout=0.1): | |
super().__init__() | |
self.norm_1 = Norm(d_model) | |
self.norm_2 = Norm(d_model) | |
self.attn = MultiHeadAttention(heads, d_model) | |
self.ff = FeedForward(d_model) | |
self.dropout_1 = nn.Dropout(dropout) | |
self.dropout_2 = nn.Dropout(dropout) | |
def forward(self, x, mask): | |
x2 = self.norm_1(x) | |
x = x + self.dropout_1(self.attn(x2, x2, x2, mask)) | |
x2 = self.norm_2(x) | |
x = x + self.dropout_2(self.ff(x2)) | |
return x | |
# build a decoder layer with two multi-head attention layers and | |
# one feed-forward layer | |
class DecoderLayer(nn.Module): | |
def __init__(self, d_model, heads, dropout=0.1): | |
super().__init__() | |
self.norm_1 = Norm(d_model) | |
self.norm_2 = Norm(d_model) | |
self.norm_3 = Norm(d_model) | |
self.dropout_1 = nn.Dropout(dropout) | |
self.dropout_2 = nn.Dropout(dropout) | |
self.dropout_3 = nn.Dropout(dropout) | |
self.attn_1 = MultiHeadAttention(heads, d_model) | |
self.attn_2 = MultiHeadAttention(heads, d_model) | |
self.ff = FeedForward(d_model).cuda() | |
def forward(self, x, e_outputs, src_mask, trg_mask): | |
x2 = self.norm_1(x) | |
x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask)) | |
x2 = self.norm_2(x) | |
x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask)) | |
x2 = self.norm_3(x) | |
x = x + self.dropout_3(self.ff(x2)) | |
return x | |
# We can then build a convenient cloning function that can generate multiple layers: | |
def get_clones(module, N): | |
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) | |
class Encoder(nn.Module): | |
def __init__(self, d_model, N, heads, in_size): | |
super().__init__() | |
self.N = N | |
self.embed = Embedder(in_size, d_model) | |
self.pe = PositionalEncoder(d_model) | |
self.layers = get_clones(EncoderLayer(d_model, heads), N) | |
self.norm = Norm(d_model) | |
def forward(self, x, mask=None): | |
x = self.embed(x) | |
x = self.pe(x) | |
for i in range(self.N): | |
x = self.layers[i](x, mask) | |
return self.norm(x) | |
class Decoder(nn.Module): | |
def __init__(self, d_model, N, heads, in_size): | |
super().__init__() | |
self.N = N | |
self.embed = Embedder(in_size, d_model) | |
self.pe = PositionalEncoder(d_model) | |
self.layers = get_clones(DecoderLayer(d_model, heads), N) | |
self.norm = Norm(d_model) | |
def forward(self, x, e_outputs, src_mask=None, trg_mask=None): | |
x = self.embed(x) | |
x = self.pe(x) | |
for i in range(self.N): | |
x = self.layers[i](x, e_outputs, src_mask, trg_mask) | |
return self.norm(x) | |
class Audio2landmark_speaker_aware_old(nn.Module): | |
def __init__(self, spk_emb_enc_size=128, | |
transformer_d_model=32, N=2, heads=2, | |
pos_dim=9, | |
use_prior_net=False, is_noautovc=False): | |
super(Audio2landmark_speaker_aware, self).__init__() | |
self.pos_dim = pos_dim | |
audio_feat_size = 80 if not use_prior_net else 161 | |
audio_feat_size = 258 if is_noautovc else audio_feat_size | |
# init audio encoder with content model | |
self.use_prior_net = use_prior_net | |
self.fc_prior = nn.Sequential( | |
nn.Linear(in_features=audio_feat_size, out_features=256), | |
nn.BatchNorm1d(256), | |
nn.LeakyReLU(0.2), | |
nn.Linear(256, 161), | |
) | |
self.audio_feat_size = audio_feat_size | |
self.bilstm = nn.LSTM(input_size=161, | |
hidden_size=256, | |
num_layers=3, | |
dropout=0.5, | |
bidirectional=False, | |
batch_first=True) | |
''' original version ''' | |
self.spk_emb_encoder = nn.Sequential( | |
nn.Linear(in_features=256, out_features=256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 128), | |
nn.LeakyReLU(0.02), | |
nn.Linear(128, spk_emb_enc_size), | |
) | |
d_model = transformer_d_model * heads | |
N = N | |
heads = heads | |
self.d_model = d_model | |
self.encoder = Encoder(d_model, N, heads, in_size=256) | |
self.decoder = Decoder(d_model, N, heads, in_size=256) | |
self.out_fls_2 = nn.Sequential( | |
nn.Linear(in_features=d_model + 204, out_features=512), | |
nn.LeakyReLU(0.02), | |
nn.Linear(512, 256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 204), | |
) | |
self.out_pos_2 = nn.Sequential( | |
nn.Linear(in_features=d_model, out_features=32), | |
nn.LeakyReLU(0.02), | |
nn.Linear(32, 16), | |
nn.LeakyReLU(0.02), | |
nn.Linear(16, self.pos_dim), | |
) | |
def forward(self, au, face_id): | |
''' original version ''' | |
# audio | |
inputs = au | |
if (self.use_prior_net): | |
inputs = self.fc_prior(inputs.contiguous().view(-1, self.audio_feat_size)) | |
inputs = inputs.view(-1, 18, 161) | |
audio_encode, (_, _) = self.bilstm(inputs) | |
audio_encode = audio_encode[:, -1, :] | |
# multi-attention | |
comb_encode = audio_encode | |
src_feat = comb_encode.unsqueeze(0) | |
e_outputs = self.encoder(src_feat)[0] | |
# e_outputs = comb_encode | |
fl_input = e_outputs #[:, 0:self.d_model//4*3] | |
pos_input = e_outputs #[:, self.d_model//4*3:] | |
fl_input = torch.cat([fl_input, face_id], dim=1) | |
fl_pred = self.out_fls_2(fl_input) | |
pos_pred = self.out_pos_2(pos_input) | |
return fl_pred, pos_pred, face_id[0:1, :], None | |
class Audio2landmark_speaker_aware(nn.Module): | |
def __init__(self, audio_feat_size=80, c_enc_hidden_size=256, num_layers=3, drop_out=0, | |
spk_feat_size=256, spk_emb_enc_size=128, lstm_g_win_size=64, add_info_size=6, | |
transformer_d_model=32, N=2, heads=2, z_size=128, audio_dim=256): | |
super(Audio2landmark_speaker_aware, self).__init__() | |
self.lstm_g_win_size = lstm_g_win_size | |
self.add_info_size = add_info_size | |
comb_mlp_size = c_enc_hidden_size * 2 | |
self.audio_content_encoder = nn.LSTM(input_size=audio_feat_size, | |
hidden_size=c_enc_hidden_size, | |
num_layers=num_layers, | |
dropout=drop_out, | |
bidirectional=False, | |
batch_first=True) | |
self.use_audio_projection = not (audio_dim == c_enc_hidden_size) | |
if(self.use_audio_projection): | |
self.audio_projection = nn.Sequential( | |
nn.Linear(in_features=c_enc_hidden_size, out_features=256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 128), | |
nn.LeakyReLU(0.02), | |
nn.Linear(128, audio_dim), | |
) | |
''' original version ''' | |
self.spk_emb_encoder = nn.Sequential( | |
nn.Linear(in_features=spk_feat_size, out_features=256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 128), | |
nn.LeakyReLU(0.02), | |
nn.Linear(128, spk_emb_enc_size), | |
) | |
d_model = transformer_d_model * heads | |
N = N | |
heads = heads | |
self.encoder = Encoder(d_model, N, heads, in_size=audio_dim + spk_emb_enc_size + z_size) | |
self.decoder = Decoder(d_model, N, heads, in_size=204) | |
self.out = nn.Sequential( | |
nn.Linear(in_features=d_model + z_size, out_features=512), | |
nn.LeakyReLU(0.02), | |
nn.Linear(512, 256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 204), | |
) | |
def forward(self, au, emb, face_id, add_z_spk=False, another_emb=None): | |
# audio | |
audio_encode, (_, _) = self.audio_content_encoder(au) | |
audio_encode = audio_encode[:, -1, :] | |
if(self.use_audio_projection): | |
audio_encode = self.audio_projection(audio_encode) | |
# spk | |
spk_encode = self.spk_emb_encoder(emb) | |
if(add_z_spk): | |
z_spk = torch.tensor(torch.randn(spk_encode.shape)*0.01, requires_grad=False, dtype=torch.float).to(device) | |
spk_encode = spk_encode + z_spk | |
# comb | |
z = torch.tensor(torch.zeros(au.shape[0], 128), requires_grad=False, dtype=torch.float).to(device) | |
comb_encode = torch.cat((audio_encode, spk_encode, z), dim=1) | |
src_feat = comb_encode.unsqueeze(0) | |
e_outputs = self.encoder(src_feat)[0] | |
e_outputs = torch.cat((e_outputs, z), dim=1) | |
fl_pred = self.out(e_outputs) | |
return fl_pred, face_id[0:1, :], spk_encode | |
def nopeak_mask(size): | |
np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8') | |
np_mask = torch.tensor(torch.from_numpy(np_mask) == 0) | |
np_mask = np_mask.to(device) | |
return np_mask | |
def create_masks(src, trg): | |
src_mask = (src != torch.zeros_like(src, requires_grad=False)) | |
if trg is not None: | |
size = trg.size(1) # get seq_len for matrix | |
np_mask = nopeak_mask(size) | |
np_mask = np_mask.to(device) | |
trg_mask = np_mask | |
else: | |
trg_mask = None | |
return src_mask, trg_mask | |
class Transformer_DT(nn.Module): | |
def __init__(self, transformer_d_model=32, N=2, heads=2, spk_emb_enc_size=128): | |
super(Transformer_DT, self).__init__() | |
d_model = transformer_d_model * heads | |
self.encoder = Encoder(d_model, N, heads, in_size=204 + spk_emb_enc_size) | |
self.out = nn.Sequential( | |
nn.Linear(in_features=d_model, out_features=512), | |
nn.LeakyReLU(0.02), | |
nn.Linear(512, 256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 1), | |
) | |
def forward(self, fls, spk_emb, win_size=64, win_step=16): | |
feat = torch.cat((fls, spk_emb), dim=1) | |
win_size = feat.shape[0]-1 if feat.shape[0] <= win_size else win_size | |
D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size, win_step)] | |
D_input = torch.stack(D_input, dim=0) | |
D_output = self.encoder(D_input) | |
D_output = torch.max(D_output, dim=1, keepdim=False)[0] | |
d = self.out(D_output) | |
# d = torch.sigmoid(d) | |
return d | |
class TalkingToon_spk2res_lstmgan_DT(nn.Module): | |
def __init__(self, comb_emb_size=256, lstm_g_hidden_size=256, num_layers=3, drop_out=0, input_size=6): | |
super(TalkingToon_spk2res_lstmgan_DT, self).__init__() | |
self.fl_DT = nn.GRU(input_size=comb_emb_size + FACE_ID_FEAT_SIZE, | |
hidden_size=lstm_g_hidden_size, | |
num_layers=3, | |
dropout=0, | |
bidirectional=False, | |
batch_first=True) | |
self.projection = nn.Sequential( | |
nn.Linear(in_features=lstm_g_hidden_size, out_features=512), | |
nn.LeakyReLU(0.02), | |
nn.Linear(512, 256), | |
nn.LeakyReLU(0.02), | |
nn.Linear(256, 1), | |
) | |
self.maxpool = nn.MaxPool1d(4, 1) | |
def forward(self, comb_encode, fls, win_size=32, win_step=1): | |
feat = torch.cat((comb_encode, fls), dim=1) | |
# v | |
# feat = torch.cat((comb_encode[0:-1], fls[1:] - fls[0:-1]), dim=1) | |
# max pooling | |
feat = feat.transpose(0, 1).unsqueeze(0) | |
feat = self.maxpool(feat) | |
feat = feat[0].transpose(0, 1) | |
win_size = feat.shape[0] - 1 if feat.shape[0] <= win_size else win_size | |
D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)] | |
D_input = torch.stack(D_input, dim=0) | |
D_output, _ = self.fl_DT(D_input) | |
D_output = D_output[:, -1, :] | |
d = self.projection(D_output) | |
# d = torch.sigmoid(d) | |
return d |