audio-driven-animations / MakeItTalk /src /models /model_audio2landmark.py
marlenezw's picture
changing face alignment and removing its docker file.
22257c4
raw
history blame
16.7 kB
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import math
import torch.nn.functional as F
import copy
import numpy as np
# device = torch.device("mps" if torch.backends.mps.is_available() else "cpu")
device = torch.device("cuda")
AUDIO_FEAT_SIZE = 161
FACE_ID_FEAT_SIZE = 204
Z_SIZE = 16
EPSILON = 1e-40
class Audio2landmark_content(nn.Module):
def __init__(self, num_window_frames=18, in_size=80, lstm_size=AUDIO_FEAT_SIZE, use_prior_net=False, hidden_size=256, num_layers=3, drop_out=0, bidirectional=False):
super(Audio2landmark_content, self).__init__()
self.fc_prior = self.fc = nn.Sequential(
nn.Linear(in_features=in_size, out_features=256),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Linear(256, lstm_size),
)
self.use_prior_net = use_prior_net
if(use_prior_net):
self.bilstm = nn.LSTM(input_size=lstm_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=drop_out,
bidirectional=bidirectional,
batch_first=True, )
else:
self.bilstm = nn.LSTM(input_size=in_size,
hidden_size=hidden_size,
num_layers=num_layers,
dropout=drop_out,
bidirectional=bidirectional,
batch_first=True, )
self.in_size = in_size
self.lstm_size = lstm_size
self.num_window_frames = num_window_frames
self.fc_in_features = hidden_size * 2 if bidirectional else hidden_size
self.fc = nn.Sequential(
nn.Linear(in_features=self.fc_in_features + FACE_ID_FEAT_SIZE, out_features=512),
nn.BatchNorm1d(512),
nn.LeakyReLU(0.2),
nn.Linear(512, 256),
nn.BatchNorm1d(256),
nn.LeakyReLU(0.2),
nn.Linear(256, 204),
)
def forward(self, au, face_id):
inputs = au
if(self.use_prior_net):
inputs = self.fc_prior(inputs.contiguous().view(-1, self.in_size))
inputs = inputs.view(-1, self.num_window_frames, self.lstm_size)
output, (hn, cn) = self.bilstm(inputs)
output = output[:, -1, :]
if(face_id.shape[0] == 1):
face_id = face_id.repeat(output.shape[0], 1)
output2 = torch.cat((output, face_id), dim=1)
output2 = self.fc(output2)
# output += face_id
return output2, face_id
class Embedder(nn.Module):
def __init__(self, feat_size, d_model):
super().__init__()
self.embed = nn.Linear(feat_size, d_model)
def forward(self, x):
return self.embed(x)
class PositionalEncoder(nn.Module):
def __init__(self, d_model, max_seq_len=512):
super().__init__()
self.d_model = d_model
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model, 2):
pe[pos, i] = \
math.sin(pos / (10000 ** ((2 * i) / d_model)))
pe[pos, i + 1] = \
math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model)))
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
# make embeddings relatively larger
x = x * math.sqrt(self.d_model)
# add constant to embedding
seq_len = x.size(1)
x = x + self.pe[:, :seq_len].clone().detach().to(device)
return x
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = F.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout=0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1, 2)
q = q.transpose(1, 2)
v = v.transpose(1, 2)
# calculate attention using function we will define next
scores = attention(q, k, v, self.d_k, mask, self.dropout)
# concatenate heads and put through final linear layer
concat = scores.transpose(1, 2).contiguous() \
.view(bs, -1, self.d_model)
output = self.out(concat)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=2048, dropout = 0.1):
super().__init__()
# We set d_ff as a default to 2048
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.dropout(F.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
class Norm(nn.Module):
def __init__(self, d_model, eps=1e-6):
super().__init__()
self.size = d_model
# create two learnable parameters to calibrate normalisation
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
/ (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
# build an encoder layer with one multi-head attention layer and one # feed-forward layer
class EncoderLayer(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.attn = MultiHeadAttention(heads, d_model)
self.ff = FeedForward(d_model)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x, mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn(x2, x2, x2, mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.ff(x2))
return x
# build a decoder layer with two multi-head attention layers and
# one feed-forward layer
class DecoderLayer(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.norm_3 = Norm(d_model)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
self.dropout_3 = nn.Dropout(dropout)
self.attn_1 = MultiHeadAttention(heads, d_model)
self.attn_2 = MultiHeadAttention(heads, d_model)
# self.ff = FeedForward(d_model).mps()
self.ff = FeedForward(d_model)
def forward(self, x, e_outputs, src_mask, trg_mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask))
x2 = self.norm_3(x)
x = x + self.dropout_3(self.ff(x2))
return x
# We can then build a convenient cloning function that can generate multiple layers:
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Encoder(nn.Module):
def __init__(self, d_model, N, heads, in_size):
super().__init__()
self.N = N
self.embed = Embedder(in_size, d_model)
self.pe = PositionalEncoder(d_model)
self.layers = get_clones(EncoderLayer(d_model, heads), N)
self.norm = Norm(d_model)
def forward(self, x, mask=None):
x = self.embed(x)
x = self.pe(x)
for i in range(self.N):
x = self.layers[i](x, mask)
return self.norm(x)
class Decoder(nn.Module):
def __init__(self, d_model, N, heads, in_size):
super().__init__()
self.N = N
self.embed = Embedder(in_size, d_model)
self.pe = PositionalEncoder(d_model)
self.layers = get_clones(DecoderLayer(d_model, heads), N)
self.norm = Norm(d_model)
def forward(self, x, e_outputs, src_mask=None, trg_mask=None):
x = self.embed(x)
x = self.pe(x)
for i in range(self.N):
x = self.layers[i](x, e_outputs, src_mask, trg_mask)
return self.norm(x)
class Audio2landmark_pos(nn.Module):
def __init__(self, audio_feat_size=80, c_enc_hidden_size=256, num_layers=3, drop_out=0,
spk_feat_size=256, spk_emb_enc_size=128, lstm_g_win_size=64, add_info_size=6,
transformer_d_model=32, N=2, heads=2, z_size=128, audio_dim=256):
super(Audio2landmark_pos, self).__init__()
self.lstm_g_win_size = lstm_g_win_size
self.add_info_size = add_info_size
comb_mlp_size = c_enc_hidden_size * 2
self.audio_content_encoder = nn.LSTM(input_size=audio_feat_size,
hidden_size=c_enc_hidden_size,
num_layers=num_layers,
dropout=drop_out,
bidirectional=False,
batch_first=True)
self.use_audio_projection = not (audio_dim == c_enc_hidden_size)
if(self.use_audio_projection):
self.audio_projection = nn.Sequential(
nn.Linear(in_features=c_enc_hidden_size, out_features=256),
nn.LeakyReLU(0.02),
nn.Linear(256, 128),
nn.LeakyReLU(0.02),
nn.Linear(128, audio_dim),
)
''' original version '''
self.spk_emb_encoder = nn.Sequential(
nn.Linear(in_features=spk_feat_size, out_features=256),
nn.LeakyReLU(0.02),
nn.Linear(256, 128),
nn.LeakyReLU(0.02),
nn.Linear(128, spk_emb_enc_size),
)
# self.comb_mlp = nn.Sequential(
# nn.Linear(in_features=audio_dim + spk_emb_enc_size, out_features=comb_mlp_size),
# nn.LeakyReLU(0.02),
# nn.Linear(comb_mlp_size, comb_mlp_size // 2),
# nn.LeakyReLU(0.02),
# nn.Linear(comb_mlp_size // 2, 180),
# )
d_model = transformer_d_model * heads
N = N
heads = heads
self.encoder = Encoder(d_model, N, heads, in_size=audio_dim + spk_emb_enc_size + z_size)
self.decoder = Decoder(d_model, N, heads, in_size=204)
self.out = nn.Sequential(
nn.Linear(in_features=d_model + z_size, out_features=512),
nn.LeakyReLU(0.02),
nn.Linear(512, 256),
nn.LeakyReLU(0.02),
nn.Linear(256, 204),
)
def forward(self, au, emb, face_id, fls, z, add_z_spk=False, another_emb=None):
# audio
audio_encode, (_, _) = self.audio_content_encoder(au)
audio_encode = audio_encode[:, -1, :]
if(self.use_audio_projection):
audio_encode = self.audio_projection(audio_encode)
# spk
spk_encode = self.spk_emb_encoder(emb)
if(add_z_spk):
z_spk = torch.tensor(torch.randn(spk_encode.shape)*0.01, requires_grad=False, dtype=torch.float).to(device)
spk_encode = spk_encode + z_spk
# comb
# comb_input = torch.cat((audio_encode, spk_encode), dim=1)
# comb_encode = self.comb_mlp(comb_input)
comb_encode = torch.cat((audio_encode, spk_encode, z), dim=1)
src_feat = comb_encode.unsqueeze(0)
e_outputs = self.encoder(src_feat)[0]
e_outputs = torch.cat((e_outputs, z), dim=1)
fl_pred = self.out(e_outputs)
return fl_pred, face_id[0:1, :], spk_encode
def nopeak_mask(size):
np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8')
np_mask = torch.tensor(torch.from_numpy(np_mask) == 0)
np_mask = np_mask.to(device)
return np_mask
def create_masks(src, trg):
src_mask = (src != torch.zeros_like(src, requires_grad=False))
if trg is not None:
size = trg.size(1) # get seq_len for matrix
np_mask = nopeak_mask(size)
np_mask = np_mask.to(device)
trg_mask = np_mask
else:
trg_mask = None
return src_mask, trg_mask
class TalkingToon_spk2res_lstmgan_DL(nn.Module):
def __init__(self, comb_emb_size=256, input_size=6):
super(TalkingToon_spk2res_lstmgan_DL, self).__init__()
self.fl_D = nn.Sequential(
nn.Linear(in_features=FACE_ID_FEAT_SIZE, out_features=512),
nn.LeakyReLU(0.02),
nn.Linear(512, 256),
nn.LeakyReLU(0.02),
nn.Linear(256, 1),
)
def forward(self, feat):
d = self.fl_D(feat)
# d = torch.sigmoid(d)
return d
class Transformer_DT(nn.Module):
def __init__(self, transformer_d_model=32, N=2, heads=2, spk_emb_enc_size=128):
super(Transformer_DT, self).__init__()
d_model = transformer_d_model * heads
self.encoder = Encoder(d_model, N, heads, in_size=204 + spk_emb_enc_size)
self.out = nn.Sequential(
nn.Linear(in_features=d_model, out_features=512),
nn.LeakyReLU(0.02),
nn.Linear(512, 256),
nn.LeakyReLU(0.02),
nn.Linear(256, 1),
)
def forward(self, fls, spk_emb, win_size=64, win_step=1):
feat = torch.cat((fls, spk_emb), dim=1)
win_size = feat.shape[0]-1 if feat.shape[0] <= win_size else win_size
D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)]
D_input = torch.stack(D_input, dim=0)
D_output = self.encoder(D_input)
D_output = torch.max(D_output, dim=1, keepdim=False)[0]
d = self.out(D_output)
# d = torch.sigmoid(d)
return d
class TalkingToon_spk2res_lstmgan_DT(nn.Module):
def __init__(self, comb_emb_size=256, lstm_g_hidden_size=256, num_layers=3, drop_out=0, input_size=6):
super(TalkingToon_spk2res_lstmgan_DT, self).__init__()
self.fl_DT = nn.GRU(input_size=comb_emb_size + FACE_ID_FEAT_SIZE,
hidden_size=lstm_g_hidden_size,
num_layers=3,
dropout=0,
bidirectional=False,
batch_first=True)
self.projection = nn.Sequential(
nn.Linear(in_features=lstm_g_hidden_size, out_features=512),
nn.LeakyReLU(0.02),
nn.Linear(512, 256),
nn.LeakyReLU(0.02),
nn.Linear(256, 1),
)
self.maxpool = nn.MaxPool1d(4, 1)
def forward(self, comb_encode, fls, win_size=32, win_step=1):
feat = torch.cat((comb_encode, fls), dim=1)
# v
# feat = torch.cat((comb_encode[0:-1], fls[1:] - fls[0:-1]), dim=1)
# max pooling
feat = feat.transpose(0, 1).unsqueeze(0)
feat = self.maxpool(feat)
feat = feat[0].transpose(0, 1)
win_size = feat.shape[0] - 1 if feat.shape[0] <= win_size else win_size
D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)]
D_input = torch.stack(D_input, dim=0)
D_output, _ = self.fl_DT(D_input)
D_output = D_output[:, -1, :]
d = self.projection(D_output)
# d = torch.sigmoid(d)
return d