Spaces:
Sleeping
Sleeping
from thirdparty.face_of_art.logging_functions import * | |
import os | |
import numpy as np | |
from menpo.shape import PointCloud | |
from menpofit.clm import GradientDescentCLMFitter | |
import pickle | |
import math | |
jaw_line_inds = np.arange(0, 17) | |
nose_inds = np.arange(27, 36) | |
left_eye_inds = np.arange(36, 42) | |
right_eye_inds = np.arange(42, 48) | |
left_brow_inds = np.arange(17, 22) | |
right_brow_inds = np.arange(22, 27) | |
mouth_inds = np.arange(48, 68) | |
def sigmoid(x, rate, offset): | |
return 1 / (1 + math.exp(-rate * (x - offset))) | |
def calculate_evidence(patch_responses, rate=0.25, offset=20): | |
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment | |
rspmapShape = patch_responses[0, 0, ...].shape | |
n_points = patch_responses.shape[0] | |
y_weight = [np.sum(patch_responses[i, 0, ...], axis=1) for i in range(n_points)] | |
x_weight = [np.sum(patch_responses[i, 0, ...], axis=0) for i in range(n_points)] | |
# y_weight /= y_weight.sum() | |
# x_weight /= x_weight.sum() | |
y_coordinate = range(0, rspmapShape[0]) | |
x_coordinate = range(0, rspmapShape[1]) | |
varList = [(np.abs( | |
np.average((y_coordinate - np.average(y_coordinate, weights=y_weight[i])) ** 2, weights=y_weight[i])), | |
np.abs(np.average((x_coordinate - np.average(x_coordinate, weights=x_weight[i])) ** 2, | |
weights=x_weight[i]))) | |
for i in range(n_points)] | |
# patch_responses[patch_responses<0.001] = 0 | |
prpList = [ | |
(np.sum(patch_responses[i, 0, ...], axis=(-1, -2)), np.sum(patch_responses[i, 0, ...], axis=(-1, -2))) | |
for i in range(n_points)] | |
var = np.array(varList).flatten() | |
var[var == 0] = np.finfo(float).eps | |
var = np.sqrt(var) | |
var = 1 / var | |
weight = np.array(prpList).flatten() | |
weight *= var | |
# offset = np.average(weight) - 20 | |
weight = [sigmoid(i, rate, offset) for i in weight] | |
weight = np.array(weight) | |
return weight | |
def get_patches_around_landmarks(heat_maps, menpo_shape, patch_size=(30,30), image_shape=256): | |
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment | |
padH = int(image_shape / 2) | |
padW = int(image_shape / 2) | |
rps_zeros = np.zeros((1, 2 * image_shape, 2 * image_shape, menpo_shape.n_points)) | |
rps_zeros[0, padH:padH + image_shape, padW:padW + image_shape, :] = heat_maps | |
rOffset = np.floor(patch_size[0] / 2).astype(int) | |
lOffset = patch_size[0] - rOffset | |
rspList = [rps_zeros[0, y - rOffset:y + lOffset, x - rOffset:x + lOffset, i] for i in range(menpo_shape.n_points) | |
for y in [np.around(menpo_shape.points[i][0] + 1 + padH).astype(int)] | |
for x in [np.around(menpo_shape.points[i][1] + 1 + padW).astype(int)]] | |
patches = np.array(rspList)[:, None, :, :] | |
return patches | |
def pdm_correct(init_shape, pdm_model, part_inds=None): | |
""" correct landmarks using pdm (point distribution model)""" | |
pdm_model.set_target(PointCloud(init_shape)) | |
if part_inds is None: | |
return pdm_model.target.points | |
else: | |
return pdm_model.target.points[part_inds] | |
def weighted_pdm_transform(input_pdm_model, patches, shape, inirho=20): | |
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment | |
weight = calculate_evidence(patches, rate=0.5, offset=10).reshape((1, -1)) | |
pdm_model = input_pdm_model.copy() | |
# write project_weight | |
ini_rho2_inv_prior = np.hstack((np.zeros((4,)), inirho / pdm_model.model.eigenvalues)) | |
J = np.rollaxis(pdm_model.d_dp(None), -1, 1) | |
J = J.reshape((-1, J.shape[-1])) | |
initial_shape_mean = shape.points.ravel() - pdm_model.model._mean | |
iniJe = - J.T.dot(initial_shape_mean * weight[0]) | |
iniJWJ = J.T.dot(np.diag(weight[0]).dot(J)) | |
inv_JJ = np.linalg.inv(iniJWJ + np.diag(ini_rho2_inv_prior)) | |
initial_p = -inv_JJ.dot(iniJe) | |
# Update pdm | |
pdm_model._from_vector_inplace(initial_p) | |
return pdm_model.target.points | |
def w_pdm_correct(init_shape, patches, pdm_model, part_inds=None): | |
""" correct landmarks using weighted pdm""" | |
points = weighted_pdm_transform(input_pdm_model=pdm_model, patches=patches, shape=PointCloud(init_shape)) | |
if (part_inds is not None and pdm_model.n_points < 68) or part_inds is None: | |
return points | |
else: | |
return points[part_inds] | |
def feature_based_pdm_corr(lms_init, models_dir, train_type='basic', patches=None): | |
""" correct landmarks using part-based pdm""" | |
jaw_line_inds = np.arange(0, 17) | |
nose_inds = np.arange(27, 36) | |
left_eye_inds = np.arange(36, 42) | |
right_eye_inds = np.arange(42, 48) | |
left_brow_inds = np.arange(17, 22) | |
right_brow_inds = np.arange(22, 27) | |
mouth_inds = np.arange(48, 68) | |
''' | |
selected number of PCs: | |
jaw:7 | |
eye:3 | |
brow:2 | |
nose:5 | |
mouth:7 | |
''' | |
new_lms = np.zeros((68, 2)) | |
parts = ['l_brow', 'r_brow', 'l_eye', 'r_eye', 'mouth', 'nose', 'jaw'] | |
part_inds_opt = [left_brow_inds, right_brow_inds, left_eye_inds, right_eye_inds, mouth_inds, nose_inds, | |
jaw_line_inds] | |
pc_opt = [2, 2, 3, 3, 7, 5, 7] | |
for i, part in enumerate(parts): | |
part_inds = part_inds_opt[i] | |
pc = pc_opt[i] | |
temp_model = os.path.join(models_dir, train_type + '_' + part + '_' + str(pc)) | |
filehandler = open(temp_model, "rb") | |
try: | |
pdm_temp = pickle.load(filehandler) | |
except UnicodeDecodeError: | |
pdm_temp = pickle.load(filehandler, fix_imports=True, encoding="latin1") | |
filehandler.close() | |
if patches is None: | |
part_lms_pdm = pdm_correct(lms_init[part_inds], pdm_temp) | |
else: | |
part_lms_pdm = w_pdm_correct( | |
init_shape=lms_init[part_inds], patches=patches, pdm_model=pdm_temp, part_inds=part_inds) | |
new_lms[part_inds] = part_lms_pdm | |
return new_lms | |
def clm_correct(clm_model_path, image, map, lms_init): | |
""" tune landmarks using clm (constrained local model)""" | |
filehandler = open(os.path.join(clm_model_path), "rb") | |
try: | |
part_model = pickle.load(filehandler) | |
except UnicodeDecodeError: | |
part_model = pickle.load(filehandler, fix_imports=True, encoding="latin1") | |
filehandler.close() | |
# from ECT: https://github.com/HongwenZhang/ECT-FaceAlignment | |
part_model.opt = dict() | |
part_model.opt['numIter'] = 5 | |
part_model.opt['kernel_covariance'] = 10 | |
part_model.opt['sigOffset'] = 25 | |
part_model.opt['sigRate'] = 0.25 | |
part_model.opt['pdm_rho'] = 20 | |
part_model.opt['verbose'] = False | |
part_model.opt['rho2'] = 20 | |
part_model.opt['ablation'] = (True, True) | |
part_model.opt['ratio1'] = 0.12 | |
part_model.opt['ratio2'] = 0.08 | |
part_model.opt['smooth'] = True | |
fitter = GradientDescentCLMFitter(part_model, n_shape=30) | |
image.rspmap_data = np.swapaxes(np.swapaxes(map, 1, 3), 2, 3) | |
fr = fitter.fit_from_shape(image=image, initial_shape=PointCloud(lms_init), gt_shape=PointCloud(lms_init)) | |
w_pdm_clm = fr.final_shape.points | |
return w_pdm_clm | |