audio-driven-animations / MakeItTalk /src /autovc /AutoVC_mel_Convertor_retrain_version.py
marlenezw's picture
editing a bunch of file paths.
075b64e
import os
import numpy as np
import pickle
import torch
from math import ceil
from src.autovc.retrain_version.model_vc_37_1 import Generator
from pydub import AudioSegment
import pynormalize.pynormalize
from scipy.io import wavfile as wav
from scipy.signal import stft
def match_target_amplitude(sound, target_dBFS):
change_in_dBFS = target_dBFS - sound.dBFS
return sound.apply_gain(change_in_dBFS)
class AutoVC_mel_Convertor():
def __init__(self, src_dir, proportion=(0., 1.), seed=0):
self.src_dir = src_dir
if(not os.path.exists(os.path.join(src_dir, 'filename_index.txt'))):
self.filenames = []
else:
with open(os.path.join(src_dir, 'filename_index.txt'), 'r') as f:
lines = f.readlines()
self.filenames = [(int(line.split(' ')[0]), line.split(' ')[1][:-1]) for line in lines]
np.random.seed(seed)
rand_perm = np.random.permutation(len(self.filenames))
proportion_idx = (int(proportion[0] * len(rand_perm)), int(proportion[1] * len(rand_perm)))
selected_index = rand_perm[proportion_idx[0] : proportion_idx[1]]
self.selected_filenames = [self.filenames[i] for i in selected_index]
print('{} out of {} are in this portion'.format(len(self.selected_filenames), len(self.filenames)))
def __convert_single_only_au_AutoVC_format_to_dataset__(self, filename, build_train_dataset=True):
"""
Convert a single file (only audio in AutoVC embedding format) to numpy arrays
:param filename:
:param is_map_to_std_face:
:return:
"""
global_clip_index, video_name = filename
# audio_file = os.path.join(self.src_dir, 'raw_wav', '{}.wav'.
# format(video_name[:-4]))
audio_file = os.path.join(self.src_dir, 'raw_wav', '{:05d}_{}_audio.wav'.
format(global_clip_index, video_name[:-4]))
if(not build_train_dataset):
import shutil
audio_file = os.path.join(self.src_dir, 'raw_wav', '{:05d}_{}_audio.wav'.
format(global_clip_index, video_name[:-4]))
shutil.copy(os.path.join(self.src_dir, 'test_wav_files', video_name), audio_file)
sound = AudioSegment.from_file(audio_file, "wav")
normalized_sound = match_target_amplitude(sound, -20.0)
normalized_sound.export(audio_file, format='wav')
from src.autovc.retrain_version.vocoder_spec.extract_f0_func import extract_f0_func_audiofile
S, f0_norm = extract_f0_func_audiofile(audio_file, 'M')
from src.autovc.utils import quantize_f0_interp
f0_onehot = quantize_f0_interp(f0_norm)
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
mean_emb, _ = get_spk_emb(audio_file)
return S, mean_emb, f0_onehot
def convert_wav_to_autovc_input(self, build_train_dataset=True, autovc_model_path=r'E:\Dataset\VCTK\stargan_vc\train_85_withpre1125000_local\360000-G.ckpt'):
def pad_seq(x, base=32):
len_out = int(base * ceil(float(x.shape[0]) / base))
len_pad = len_out - x.shape[0]
assert len_pad >= 0
return np.pad(x, ((0, len_pad), (0, 0)), 'constant'), len_pad
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
G = Generator(16, 256, 512, 16).eval().to(device)
g_checkpoint = torch.load(autovc_model_path, map_location=device)
G.load_state_dict(g_checkpoint['model'])
emb = np.loadtxt('autovc/retrain_version/obama_emb.txt')
emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
aus = []
for i, file in enumerate(self.selected_filenames):
print(i, file)
x_real_src, emb, f0_org_src = self.__convert_single_only_au_AutoVC_format_to_dataset__(filename=file, build_train_dataset=build_train_dataset)
'''# normal length #'''
# with torch.no_grad():
# x_identic, x_identic_psnt, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org)
# g_loss_id_psnt = F.mse_loss(x_real, x_identic_psnt, reduction='sum')
# print('loss:', g_loss_id_psnt / x_identic_psnt.shape[1] * 128)
''' too long split length '''
l = x_real_src.shape[0]
x_identic_psnt = []
step = 4096
for i in range(0, l, step):
x_real = x_real_src[i:i+step]
f0_org = f0_org_src[i:i+step]
x_real, len_pad = pad_seq(x_real.astype('float32'))
f0_org, _ = pad_seq(f0_org.astype('float32'))
x_real = torch.from_numpy(x_real[np.newaxis, :].astype('float32')).to(device)
emb_org = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
# emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
f0_org = torch.from_numpy(f0_org[np.newaxis, :].astype('float32')).to(device)
print('source shape:', x_real.shape, emb_org.shape, emb_trg.shape, f0_org.shape)
with torch.no_grad():
x_identic, x_identic_psnt_i, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org)
x_identic_psnt.append(x_identic_psnt_i)
x_identic_psnt = torch.cat(x_identic_psnt, dim=1)
print('converted shape:', x_identic_psnt.shape, code_real.shape)
if len_pad == 0:
uttr_trg = x_identic_psnt[0, :, :].cpu().numpy()
else:
uttr_trg = x_identic_psnt[0, :-len_pad, :].cpu().numpy()
# ''' plot source and converted mel-spec figures '''
# import matplotlib.pyplot as plt
# plt.subplot(1, 2, 1)
# plt.imshow(x_real_src[0:200, :])
# plt.subplot(1, 2, 2)
# plt.imshow(uttr_trg[0:200, :])
# plt.show()
#
# exit(0)
file = (file[0], file[1], emb)
aus.append((uttr_trg, file))
return aus
def convert_single_wav_to_input(self, audio_filename):
aus = []
audio_file = os.path.join(self.src_dir, 'demo_wav', audio_filename)
# Default param
TARGET_AUDIO_DBFS = -20.0
WAV_STEP = int(0.2 * 16000) # 0.2s = 5 frames
STFT_WINDOW_SIZE = {'25': 320, '29.97': 356}
STFT_WINDOW_STEP = {'25': 4, '29.97': 3}
FPS = 25
# Step 1 : Normalize the volume
target_dbfs = TARGET_AUDIO_DBFS
pynormalize.process_files(
Files=[audio_file],
target_dbfs=target_dbfs,
directory=os.path.join(self.src_dir, 'raw_wav')
)
# Step 2 : load wav file
sample_rate, samples = wav.read(audio_file)
assert (sample_rate == 16000)
if (len(samples.shape) > 1):
samples = samples[:, 0] # pick mono
# Step 3 : STFT,
# 1 frame = 1/25 * 16k = 640 samples => windowsize=320, overlap=160
# 1 frame = 1/29.97 * 16k = 533.86 samples => windowsize=356, overlap=178, (mis-align = 4.2sample / 1s)
f, t, Zxx = stft(samples, fs=sample_rate, nperseg=STFT_WINDOW_SIZE[str(FPS)])
# stft_abs = np.abs(Zxx)
stft_abs = np.log(np.abs(Zxx) ** 2 + 1e-10)
stft_abs_max = np.max(stft_abs)
stft_abs /= stft_abs_max
# Step 4 : align AV (drop last 2 frames of V)
fl_length = stft_abs.shape[1] // STFT_WINDOW_STEP[str(FPS)]
audio_stft_length = (fl_length - 2) * STFT_WINDOW_STEP[str(FPS)]
stft_signal = Zxx[:, 0:audio_stft_length]
stft_abs = stft_abs[:, 0:audio_stft_length]
audio_wav_length = int((fl_length - 2) * sample_rate / FPS)
wav_signal = samples[0:audio_wav_length]
# # Step 6 : Save audio
# info_audio = (0, stft_signal, fl_length - 2, audio_stft_length, audio_wav_length)
# au_data = (stft_abs, wav_signal, info_audio)
aus.append((stft_abs.T, None, (0, audio_filename, 0)))
return aus
def convert_single_wav_to_autovc_input(self, audio_filename, autovc_model_path):
def pad_seq(x, base=32):
len_out = int(base * ceil(float(x.shape[0]) / base))
len_pad = len_out - x.shape[0]
assert len_pad >= 0
return np.pad(x, ((0, len_pad), (0, 0)), 'constant'), len_pad
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
G = Generator(16, 256, 512, 16).eval().to(device)
g_checkpoint = torch.load(autovc_model_path, map_location=device)
G.load_state_dict(g_checkpoint['model'])
emb = np.loadtxt('MakeItTalk/src/autovc/retrain_version/obama_emb.txt')
emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
aus = []
audio_file = audio_filename
sound = AudioSegment.from_file(audio_file, "wav")
normalized_sound = match_target_amplitude(sound, -20.0)
normalized_sound.export(audio_file, format='wav')
from src.autovc.retrain_version.vocoder_spec.extract_f0_func import extract_f0_func_audiofile
x_real_src, f0_norm = extract_f0_func_audiofile(audio_file, 'F')
from src.autovc.utils import quantize_f0_interp
f0_org_src = quantize_f0_interp(f0_norm)
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
emb, _ = get_spk_emb(audio_file)
''' normal length version '''
# x_real, len_pad = pad_seq(x_real_src.astype('float32'))
# f0_org, _ = pad_seq(f0_org_src.astype('float32'))
# x_real = torch.from_numpy(x_real[np.newaxis, :].astype('float32')).to(device)
# emb_org = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
# f0_org = torch.from_numpy(f0_org[np.newaxis, :].astype('float32')).to(device)
# print('source shape:', x_real.shape, emb_org.shape, emb_trg.shape, f0_org.shape)
#
# with torch.no_grad():
# x_identic, x_identic_psnt, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org)
# print('converted shape:', x_identic_psnt.shape, code_real.shape)
''' long split version '''
l = x_real_src.shape[0]
x_identic_psnt = []
step = 4096
for i in range(0, l, step):
x_real = x_real_src[i:i + step]
f0_org = f0_org_src[i:i + step]
x_real, len_pad = pad_seq(x_real.astype('float32'))
f0_org, _ = pad_seq(f0_org.astype('float32'))
x_real = torch.from_numpy(x_real[np.newaxis, :].astype('float32')).to(device)
emb_org = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
# emb_trg = torch.from_numpy(emb[np.newaxis, :].astype('float32')).to(device)
f0_org = torch.from_numpy(f0_org[np.newaxis, :].astype('float32')).to(device)
print('source shape:', x_real.shape, emb_org.shape, emb_trg.shape, f0_org.shape)
with torch.no_grad():
x_identic, x_identic_psnt_i, code_real = G(x_real, emb_org, f0_org, emb_trg, f0_org)
x_identic_psnt.append(x_identic_psnt_i)
x_identic_psnt = torch.cat(x_identic_psnt, dim=1)
print('converted shape:', x_identic_psnt.shape, code_real.shape)
if len_pad == 0:
uttr_trg = x_identic_psnt[0, :, :].cpu().numpy()
else:
uttr_trg = x_identic_psnt[0, :-len_pad, :].cpu().numpy()
aus.append((uttr_trg, (0, audio_filename, emb)))
return aus
if __name__ == '__main__':
c = AutoVC_mel_Convertor(r'E:\Dataset\TalkingToon\Obama_for_train', proportion=(0.0, 1.0))
aus = c.convert_wav_to_autovc_input()
with open(os.path.join(r'E:\Dataset\TalkingToon\Obama_for_train', 'dump', 'autovc_retrain_mel_au.pickle'), 'wb') as fp:
pickle.dump(aus, fp)