Spaces:
Sleeping
Sleeping
File size: 15,616 Bytes
22257c4 075b64e 22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import torch.nn as nn
import torch.nn.init as init
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
class ShapeParts:
def __init__(self, np_pts):
self.data = np_pts
def part(self, idx):
return Point(self.data[idx, 0], self.data[idx, 1])
class Record():
def __init__(self, type_list):
self.data, self.count = {}, {}
self.type_list = type_list
self.max_min_data = None
for t in type_list:
self.data[t] = 0.0
self.count[t] = 0.0
def add(self, new_data, c=1.0):
for t in self.type_list:
self.data[t] += new_data
self.count[t] += c
def per(self, t):
return self.data[t] / (self.count[t] + 1e-32)
def clean(self, t):
self.data[t], self.count[t] = 0.0, 0.0
def is_better(self, t, greater):
if(self.max_min_data == None):
self.max_min_data = self.data[t]
return True
else:
if(greater):
if(self.data[t] > self.max_min_data):
self.max_min_data = self.data[t]
return True
else:
if (self.data[t] < self.max_min_data):
self.max_min_data = self.data[t]
return True
return False
def weight_init(m):
'''
Usage:
model = Model()
model.apply(weight_init)
'''
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
def get_n_params(model):
pp=0
for p in list(model.parameters()):
nn=1
for s in list(p.size()):
nn = nn*s
pp += nn
return pp
def vis_landmark_on_img(img, shape, linewidth=2):
'''
Visualize landmark on images.
'''
if (type(shape) == ShapeParts):
def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
for i in idx_list:
cv2.line(img, (shape.part(i).x, shape.part(i).y), (shape.part(i + 1).x, shape.part(i + 1).y),
color, lineWidth)
if (loop):
cv2.line(img, (shape.part(idx_list[0]).x, shape.part(idx_list[0]).y),
(shape.part(idx_list[-1] + 1).x, shape.part(idx_list[-1] + 1).y), color, lineWidth)
draw_curve(list(range(0, 16))) # jaw
draw_curve(list(range(17, 21)), color=(0, 0, 255)) # eye brow
draw_curve(list(range(22, 26)), color=(0, 0, 255))
draw_curve(list(range(27, 35))) # nose
draw_curve(list(range(36, 41)), loop=True) # eyes
draw_curve(list(range(42, 47)), loop=True)
draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth
draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0))
else:
def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
for i in idx_list:
cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth)
if (loop):
cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]),
(shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth)
draw_curve(list(range(0, 16))) # jaw
draw_curve(list(range(17, 21)), color=(0, 0, 255)) # eye brow
draw_curve(list(range(22, 26)), color=(0, 0, 255))
draw_curve(list(range(27, 35))) # nose
draw_curve(list(range(36, 41)), loop=True) # eyes
draw_curve(list(range(42, 47)), loop=True)
draw_curve(list(range(48, 59)), loop=True, color=(0, 255, 255)) # mouth
draw_curve(list(range(60, 67)), loop=True, color=(255, 255, 0))
return img
def vis_landmark_on_plt(fl, x_offset=0.0, show_now=True, c='r'):
def draw_curve(shape, idx_list, loop=False, x_offset=0.0, c=None):
for i in idx_list:
plt.plot((shape[i, 0] + x_offset, shape[i + 1, 0] + x_offset), (-shape[i, 1], -shape[i + 1, 1]), c=c, lineWidth=1)
if (loop):
plt.plot((shape[idx_list[0], 0] + x_offset, shape[idx_list[-1] + 1, 0] + x_offset),
(-shape[idx_list[0], 1], -shape[idx_list[-1] + 1, 1]), c=c, lineWidth=1)
draw_curve(fl, list(range(0, 16)), x_offset=x_offset, c=c) # jaw
draw_curve(fl, list(range(17, 21)), x_offset=x_offset, c=c) # eye brow
draw_curve(fl, list(range(22, 26)), x_offset=x_offset, c=c)
draw_curve(fl, list(range(27, 35)), x_offset=x_offset, c=c) # nose
draw_curve(fl, list(range(36, 41)), loop=True, x_offset=x_offset, c=c) # eyes
draw_curve(fl, list(range(42, 47)), loop=True, x_offset=x_offset, c=c)
draw_curve(fl, list(range(48, 59)), loop=True, x_offset=x_offset, c=c) # mouth
draw_curve(fl, list(range(60, 67)), loop=True, x_offset=x_offset, c=c)
if(show_now):
plt.show()
def try_mkdir(dir):
try:
os.mkdir(dir)
except:
pass
import numpy
def smooth(x, window_len=11, window='hanning'):
"""smooth the data using a window with requested size.
This method is based on the convolution of a scaled window with the signal.
The signal is prepared by introducing reflected copies of the signal
(with the window size) in both ends so that transient parts are minimized
in the begining and end part of the output signal.
input:
x: the input signal
window_len: the dimension of the smoothing window; should be an odd integer
window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'
flat window will produce a moving average smoothing.
output:
the smoothed signal
example:
t=linspace(-2,2,0.1)
x=sin(t)+randn(len(t))*0.1
y=smooth(x)
see also:
numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve
scipy.signal.lfilter
the window parameter could be the window itself if an array instead of a string
NOTE: length(output) != length(input), to correct this: return y[(window_len/2-1):-(window_len/2)] instead of just y.
"""
if x.ndim != 1:
raise(ValueError, "smooth only accepts 1 dimension arrays.")
if x.size < window_len:
raise(ValueError, "Input vector needs to be bigger than window size.")
if window_len < 3:
return x
if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']:
raise(ValueError, "Window is on of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'")
s = numpy.r_[x[window_len - 1:0:-1], x, x[-2:-window_len - 1:-1]]
# print(len(s))
if window == 'flat': # moving average
w = numpy.ones(window_len, 'd')
else:
w = eval('numpy.' + window + '(window_len)')
y = numpy.convolve(w / w.sum(), s, mode='valid')
return y
def get_puppet_info(DEMO_CH, ROOT_DIR):
import numpy as np
B = 5000
# for wilk example
if (DEMO_CH == 'wilk_old'):
bound = np.array([-B, -B, -B, 459, -B, B+918, 419, B+918, B+838, B+918, B+838, 459, B+838, -B, 419, -B]).reshape(1, -1)
# bound = np.array([0, 0, 0, 459, 0, 918, 419, 918, 838, 918, 838, 459, 838, 0, 419, 0]).reshape(1, -1)
scale, shift = -0.005276414887140783, np.array([-475.4316, -193.53225])
elif (DEMO_CH == 'sketch'):
bound = np.array([-10000, -10000, -10000, 221, -10000, 10443, 232, 10443, 10465, 10443, 10465, 221, 10465, -10000, 232, -10000]).reshape(1, -1)
scale, shift = -0.006393177201290783, np.array([-226.8411, -176.5216])
elif (DEMO_CH == 'onepunch'):
bound = np.array([0, 0, 0, 168, 0, 337, 282, 337, 565, 337, 565, 168, 565, 0, 282, 0]).reshape(1, -1)
scale, shift = -0.007558707536598317, np.array([-301.4903, -120.05265])
elif (DEMO_CH == 'cat'):
bound = np.array([0, 0, 0, 315, 0, 631, 299, 631, 599, 631, 599, 315, 599, 0, 299, 0]).reshape(1, -1)
scale, shift = -0.009099476040795225, np.array([-297.17085, -259.2363])
elif (DEMO_CH == 'paint'):
bound = np.array([0, 0, 0, 249, 0, 499, 212, 499, 424, 499, 424, 249, 424, 0, 212, 0]).reshape(1, -1)
scale, shift = -0.007409177996872789, np.array([-161.92345878, -249.40250103])
elif (DEMO_CH == 'mulaney'):
bound = np.array([0, 0, 0, 255, 0, 511, 341, 511, 682, 511, 682, 255, 682, 0, 341, 0]).reshape(1, -1)
scale, shift = -0.010651548568731444, np.array([-333.54245, -189.081])
elif (DEMO_CH == 'cartoonM_old'):
bound = np.array([0, 0, 0, 299, 0, 599, 399, 599, 799, 599, 799, 299, 799, 0, 399, 0]).reshape(1, -1)
scale, shift = -0.0055312373170456845, np.array([-398.6125, -240.45235])
elif (DEMO_CH == 'beer'):
bound = np.array([0, 0, 0, 309, 0, 618, 260, 618, 520, 618, 520, 309, 520, 0, 260, 0]).reshape(1, -1)
scale, shift = -0.0054102709937112374, np.array([-254.1478, -156.6971])
elif (DEMO_CH == 'color'):
bound = np.array([0, 0, 0, 140, 0, 280, 249, 280, 499, 280, 499, 140, 499, 0, 249, 0]).reshape(1, -1)
scale, shift = -0.012986159189209149, np.array([-237.27065, -79.2465])
else:
if (os.path.exists(os.path.join(ROOT_DIR, DEMO_CH + '.jpg'))):
img = cv2.imread(os.path.join(ROOT_DIR, DEMO_CH + ".jpg"))
elif (os.path.exists(os.path.join(ROOT_DIR, DEMO_CH + '.png'))):
img = cv2.imread(os.path.join(ROOT_DIR, DEMO_CH + ".png"))
else:
print('not file founded.')
exit(0)
size = img.shape
h = size[1] - 1
w = size[0] - 1
bound = np.array([-B, -B,
-B, w//4,
-B, w // 2,
-B, w//4*3,
-B, B + w,
h // 2, B+w,
B+h, B+w,
B+h, w // 2,
B+h, -B,
h//4, -B,
h // 2, -B,
h//4*3, -B]).reshape(1, -1)
ss = np.loadtxt(os.path.join(ROOT_DIR, DEMO_CH + '_scale_shift.txt'))
scale, shift = ss[0], np.array([ss[1], ss[2]])
return bound, scale, shift
def close_input_face_mouth(shape_3d, p1=0.7, p2=0.5):
shape_3d = shape_3d.reshape((1, 68, 3))
index1 = list(range(60 - 1, 55 - 1, -1))
index2 = list(range(68 - 1, 65 - 1, -1))
mean_out = 0.5 * (shape_3d[:, 49:54] + shape_3d[:, index1])
mean_in = 0.5 * (shape_3d[:, 61:64] + shape_3d[:, index2])
shape_3d[:, 50:53] -= (shape_3d[:, 61:64] - mean_in) * p1
shape_3d[:, list(range(59 - 1, 56 - 1, -1))] -= (shape_3d[:, index2] - mean_in) * p1
shape_3d[:, 49] -= (shape_3d[:, 61] - mean_in[:, 0]) * p2
shape_3d[:, 53] -= (shape_3d[:, 63] - mean_in[:, -1]) * p2
shape_3d[:, 59] -= (shape_3d[:, 67] - mean_in[:, 0]) * p2
shape_3d[:, 55] -= (shape_3d[:, 65] - mean_in[:, -1]) * p2
# shape_3d[:, 61:64] = shape_3d[:, index2] = mean_in
shape_3d[:, 61:64] -= (shape_3d[:, 61:64] - mean_in) * p1
shape_3d[:, index2] -= (shape_3d[:, index2] - mean_in) * p1
shape_3d = shape_3d.reshape((68, 3))
return shape_3d
def norm_input_face(shape_3d):
scale = 1.6 / (shape_3d[0, 0] - shape_3d[16, 0])
shift = - 0.5 * (shape_3d[0, 0:2] + shape_3d[16, 0:2])
shape_3d[:, 0:2] = (shape_3d[:, 0:2] + shift) * scale
face_std = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt').reshape(68, 3)
shape_3d[:, -1] = face_std[:, -1] * 0.1
shape_3d[:, 0:2] = -shape_3d[:, 0:2]
return shape_3d, scale, shift
def add_naive_eye(fl):
for t in range(fl.shape[0]):
r = 0.95
fl[t, 37], fl[t, 41] = r * fl[t, 37] + (1 - r) * fl[t, 41], (1 - r) * fl[t, 37] + r * fl[t, 41]
fl[t, 38], fl[t, 40] = r * fl[t, 38] + (1 - r) * fl[t, 40], (1 - r) * fl[t, 38] + r * fl[t, 40]
fl[t, 43], fl[t, 47] = r * fl[t, 43] + (1 - r) * fl[t, 47], (1 - r) * fl[t, 43] + r * fl[t, 47]
fl[t, 44], fl[t, 46] = r * fl[t, 44] + (1 - r) * fl[t, 46], (1 - r) * fl[t, 44] + r * fl[t, 46]
K1, K2 = 10, 15
length = fl.shape[0]
close_time_stamp = [30]
t = 30
while (t < length - 1 - K2):
t += 60
t += np.random.randint(30, 90)
if (t < length - 1 - K2):
close_time_stamp.append(t)
for t in close_time_stamp:
fl[t, 37], fl[t, 41] = 0.25 * fl[t, 37] + 0.75 * fl[t, 41], 0.25 * fl[t, 37] + 0.75 * fl[t, 41]
fl[t, 38], fl[t, 40] = 0.25 * fl[t, 38] + 0.75 * fl[t, 40], 0.25 * fl[t, 38] + 0.75 * fl[t, 40]
fl[t, 43], fl[t, 47] = 0.25 * fl[t, 43] + 0.75 * fl[t, 47], 0.25 * fl[t, 43] + 0.75 * fl[t, 47]
fl[t, 44], fl[t, 46] = 0.25 * fl[t, 44] + 0.75 * fl[t, 46], 0.25 * fl[t, 44] + 0.75 * fl[t, 46]
def interp_fl(t0, t1, t2, r):
for index in [37, 38, 40, 41, 43, 44, 46, 47]:
fl[t0, index] = r * fl[t1, index] + (1 - r) * fl[t2, index]
for t0 in range(t - K1 + 1, t):
interp_fl(t0, t - K1, t, r=(t - t0) / 1. / K1)
for t0 in range(t + 1, t + K2):
interp_fl(t0, t, t + K2, r=(t + K2 - 1 - t0) / 1. / K2)
return fl |