File size: 26,686 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import torch
import torch.nn as nn
import torch.nn.parallel
from torch.autograd import Variable
import torch.nn.functional as F
from torchvision import models
import torch.utils.model_zoo as model_zoo

from torch.nn import init
import os

import numpy as np


def weights_init_normal(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('Linear') != -1:
        init.normal(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm2d') != -1:
        init.normal_(m.weight.data, 1.0, 0.02)
        init.constant_(m.bias.data, 0.0)


def weights_init_xavier(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        init.xavier_normal_(m.weight.data, gain=0.02)
    elif classname.find('Linear') != -1:
        init.xavier_normal_(m.weight.data, gain=0.02)
    elif classname.find('BatchNorm2d') != -1:
        init.normal_(m.weight.data, 1.0, 0.02)
        init.constant_(m.bias.data, 0.0)


def weights_init_kaiming(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
    elif classname.find('Linear') != -1:
        init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
    elif classname.find('BatchNorm2d') != -1:
        init.normal_(m.weight.data, 1.0, 0.02)
        init.constant_(m.bias.data, 0.0)


def init_weights(net, init_type='normal'):
    print('initialization method [%s]' % init_type)
    if init_type == 'normal':
        net.apply(weights_init_normal)
    elif init_type == 'xavier':
        net.apply(weights_init_xavier)
    elif init_type == 'kaiming':
        net.apply(weights_init_kaiming)
    else:
        raise NotImplementedError('initialization method [%s] is not implemented' % init_type)


class FeatureExtraction(nn.Module):
    def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(FeatureExtraction, self).__init__()
        downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
        model = [downconv, nn.ReLU(True), norm_layer(ngf)]
        for i in range(n_layers):
            in_ngf = 2 ** i * ngf if 2 ** i * ngf < 512 else 512
            out_ngf = 2 ** (i + 1) * ngf if 2 ** i * ngf < 512 else 512
            downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
            model += [downconv, nn.ReLU(True)]
            model += [norm_layer(out_ngf)]
        model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
        model += [norm_layer(512)]
        model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]

        self.model = nn.Sequential(*model)
        init_weights(self.model, init_type='normal')

    def forward(self, x):
        return self.model(x)


class FeatureL2Norm(torch.nn.Module):
    def __init__(self):
        super(FeatureL2Norm, self).__init__()

    def forward(self, feature):
        epsilon = 1e-6
        norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
        return torch.div(feature, norm)


class FeatureCorrelation(nn.Module):
    def __init__(self):
        super(FeatureCorrelation, self).__init__()

    def forward(self, feature_A, feature_B):
        b, c, h, w = feature_A.size()
        # reshape features for matrix multiplication
        feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h * w)
        feature_B = feature_B.view(b, c, h * w).transpose(1, 2)
        # perform matrix mult.
        feature_mul = torch.bmm(feature_B, feature_A)
        correlation_tensor = feature_mul.view(b, h, w, h * w).transpose(2, 3).transpose(1, 2)
        return correlation_tensor


class FeatureRegression(nn.Module):
    def __init__(self, input_nc=512, output_dim=6, use_cuda=True):
        super(FeatureRegression, self).__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(inplace=True),
            nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(inplace=True),
            nn.Conv2d(256, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(inplace=True),
            nn.Conv2d(128, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
        self.linear = nn.Linear(64 * 4 * 3, output_dim)
        self.tanh = nn.Tanh()
        if use_cuda:
            self.conv.cuda()
            self.linear.cuda()
            self.tanh.cuda()

    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.size(0), -1)
        x = self.linear(x)
        x = self.tanh(x)
        return x


class AffineGridGen(nn.Module):
    def __init__(self, out_h=256, out_w=192, out_ch=3):
        super(AffineGridGen, self).__init__()
        self.out_h = out_h
        self.out_w = out_w
        self.out_ch = out_ch

    def forward(self, theta):
        theta = theta.contiguous()
        batch_size = theta.size()[0]
        out_size = torch.Size((batch_size, self.out_ch, self.out_h, self.out_w))
        return F.affine_grid(theta, out_size)


class TpsGridGen(nn.Module):
    def __init__(self, out_h=256, out_w=192, use_regular_grid=True, grid_size=3, reg_factor=0, use_cuda=True):
        super(TpsGridGen, self).__init__()
        self.out_h, self.out_w = out_h, out_w
        self.reg_factor = reg_factor
        self.use_cuda = use_cuda

        # create grid in numpy
        self.grid = np.zeros([self.out_h, self.out_w, 3], dtype=np.float32)
        # sampling grid with dim-0 coords (Y)
        self.grid_X, self.grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
        # grid_X,grid_Y: size [1,H,W,1,1]
        self.grid_X = torch.FloatTensor(self.grid_X).unsqueeze(0).unsqueeze(3)
        self.grid_Y = torch.FloatTensor(self.grid_Y).unsqueeze(0).unsqueeze(3)
        if use_cuda:
            self.grid_X = self.grid_X.cuda()
            self.grid_Y = self.grid_Y.cuda()

        # initialize regular grid for control points P_i
        if use_regular_grid:
            axis_coords = np.linspace(-1, 1, grid_size)
            self.N = grid_size * grid_size
            P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
            P_X = np.reshape(P_X, (-1, 1))  # size (N,1)
            P_Y = np.reshape(P_Y, (-1, 1))  # size (N,1)
            P_X = torch.FloatTensor(P_X)
            P_Y = torch.FloatTensor(P_Y)
            self.P_X_base = P_X.clone()
            self.P_Y_base = P_Y.clone()
            self.Li = self.compute_L_inverse(P_X, P_Y).unsqueeze(0)
            self.P_X = P_X.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0, 4)
            self.P_Y = P_Y.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0, 4)
            if use_cuda:
                self.P_X = self.P_X.cuda()
                self.P_Y = self.P_Y.cuda()
                self.P_X_base = self.P_X_base.cuda()
                self.P_Y_base = self.P_Y_base.cuda()

    def forward(self, theta):
        warped_grid = self.apply_transformation(theta, torch.cat((self.grid_X, self.grid_Y), 3))

        return warped_grid

    def compute_L_inverse(self, X, Y):
        N = X.size()[0]  # num of points (along dim 0)
        # construct matrix K
        Xmat = X.expand(N, N)
        Ymat = Y.expand(N, N)
        P_dist_squared = torch.pow(Xmat - Xmat.transpose(0, 1), 2) + torch.pow(Ymat - Ymat.transpose(0, 1), 2)
        P_dist_squared[P_dist_squared == 0] = 1  # make diagonal 1 to avoid NaN in log computation
        K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
        # construct matrix L
        O = torch.FloatTensor(N, 1).fill_(1)
        Z = torch.FloatTensor(3, 3).fill_(0)
        P = torch.cat((O, X, Y), 1)
        L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
        Li = torch.inverse(L)
        if self.use_cuda:
            Li = Li.cuda()
        return Li

    def apply_transformation(self, theta, points):
        if theta.dim() == 2:
            theta = theta.unsqueeze(2).unsqueeze(3)
        # points should be in the [B,H,W,2] format,
        # where points[:,:,:,0] are the X coords
        # and points[:,:,:,1] are the Y coords

        # input are the corresponding control points P_i
        batch_size = theta.size()[0]
        # split theta into point coordinates
        Q_X = theta[:, :self.N, :, :].squeeze(3)
        Q_Y = theta[:, self.N:, :, :].squeeze(3)
        Q_X = Q_X + self.P_X_base.expand_as(Q_X)
        Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)

        # get spatial dimensions of points
        points_b = points.size()[0]
        points_h = points.size()[1]
        points_w = points.size()[2]

        # repeat pre-defined control points along spatial dimensions of points to be transformed
        P_X = self.P_X.expand((1, points_h, points_w, 1, self.N))
        P_Y = self.P_Y.expand((1, points_h, points_w, 1, self.N))

        # compute weigths for non-linear part
        W_X = torch.bmm(self.Li[:, :self.N, :self.N].expand((batch_size, self.N, self.N)), Q_X)
        W_Y = torch.bmm(self.Li[:, :self.N, :self.N].expand((batch_size, self.N, self.N)), Q_Y)
        # reshape
        # W_X,W,Y: size [B,H,W,1,N]
        W_X = W_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
        W_Y = W_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
        # compute weights for affine part
        A_X = torch.bmm(self.Li[:, self.N:, :self.N].expand((batch_size, 3, self.N)), Q_X)
        A_Y = torch.bmm(self.Li[:, self.N:, :self.N].expand((batch_size, 3, self.N)), Q_Y)
        # reshape
        # A_X,A,Y: size [B,H,W,1,3]
        A_X = A_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
        A_Y = A_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)

        # compute distance P_i - (grid_X,grid_Y)
        # grid is expanded in point dim 4, but not in batch dim 0, as points P_X,P_Y are fixed for all batch
        points_X_for_summation = points[:, :, :, 0].unsqueeze(3).unsqueeze(4).expand(
            points[:, :, :, 0].size() + (1, self.N))
        points_Y_for_summation = points[:, :, :, 1].unsqueeze(3).unsqueeze(4).expand(
            points[:, :, :, 1].size() + (1, self.N))

        if points_b == 1:
            delta_X = points_X_for_summation - P_X
            delta_Y = points_Y_for_summation - P_Y
        else:
            # use expanded P_X,P_Y in batch dimension
            delta_X = points_X_for_summation - P_X.expand_as(points_X_for_summation)
            delta_Y = points_Y_for_summation - P_Y.expand_as(points_Y_for_summation)

        dist_squared = torch.pow(delta_X, 2) + torch.pow(delta_Y, 2)
        # U: size [1,H,W,1,N]
        dist_squared[dist_squared == 0] = 1  # avoid NaN in log computation
        U = torch.mul(dist_squared, torch.log(dist_squared))

        # expand grid in batch dimension if necessary
        points_X_batch = points[:, :, :, 0].unsqueeze(3)
        points_Y_batch = points[:, :, :, 1].unsqueeze(3)
        if points_b == 1:
            points_X_batch = points_X_batch.expand((batch_size,) + points_X_batch.size()[1:])
            points_Y_batch = points_Y_batch.expand((batch_size,) + points_Y_batch.size()[1:])

        points_X_prime = A_X[:, :, :, :, 0] + \
                         torch.mul(A_X[:, :, :, :, 1], points_X_batch) + \
                         torch.mul(A_X[:, :, :, :, 2], points_Y_batch) + \
                         torch.sum(torch.mul(W_X, U.expand_as(W_X)), 4)

        points_Y_prime = A_Y[:, :, :, :, 0] + \
                         torch.mul(A_Y[:, :, :, :, 1], points_X_batch) + \
                         torch.mul(A_Y[:, :, :, :, 2], points_Y_batch) + \
                         torch.sum(torch.mul(W_Y, U.expand_as(W_Y)), 4)

        return torch.cat((points_X_prime, points_Y_prime), 3)


# Defines the Unet generator.
# |num_downs|: number of downsamplings in UNet. For example,
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
# at the bottleneck

class UnetGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, num_downs, ngf=64,
                 norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(UnetGenerator, self).__init__()
        # construct unet structure
        unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer,
                                             innermost=True)
        for i in range(num_downs - 5):
            unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
                                                 norm_layer=norm_layer, use_dropout=use_dropout)
        unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
                                             norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
                                             norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
        unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True,
                                             norm_layer=norm_layer)

        self.model = unet_block

    def forward(self, input):
        return self.model(input)


# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
#   |-- downsampling -- |submodule| -- upsampling --|
class UnetSkipConnectionBlock(nn.Module):
    def __init__(self, outer_nc, inner_nc, input_nc=None,
                 submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(UnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        use_bias = norm_layer == nn.InstanceNorm2d

        if input_nc is None:
            input_nc = outer_nc
        downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
                             stride=2, padding=1, bias=use_bias)
        downrelu = nn.LeakyReLU(0.2, True)
        uprelu = nn.ReLU(True)
        if norm_layer != None:
            downnorm = norm_layer(inner_nc)
            upnorm = norm_layer(outer_nc)

        if outermost:
            upsample = nn.Upsample(scale_factor=2, mode='bilinear')
            upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
            down = [downconv]
            # up = [uprelu, upsample, upconv, upnorm]
            up = [uprelu, upsample, upconv]
            model = down + [submodule] + up
        elif innermost:
            upsample = nn.Upsample(scale_factor=2, mode='bilinear')
            upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
            down = [downrelu, downconv]
            if norm_layer == None:
                up = [uprelu, upsample, upconv]
            else:
                up = [uprelu, upsample, upconv, upnorm]
            model = down + up
        else:
            upsample = nn.Upsample(scale_factor=2, mode='bilinear')
            upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
            if norm_layer == None:
                down = [downrelu, downconv]
                up = [uprelu, upsample, upconv]
            else:
                down = [downrelu, downconv, downnorm]
                up = [uprelu, upsample, upconv, upnorm]

            if use_dropout:
                model = down + [submodule] + up + [nn.Dropout(0.5)]
            else:
                model = down + [submodule] + up

        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:
            return torch.cat([x, self.model(x)], 1)


# UNet with residual blocks
class ResidualBlock(nn.Module):
    def __init__(self, in_features=64, norm_layer=nn.BatchNorm2d):
        super(ResidualBlock, self).__init__()
        self.relu = nn.ReLU(True)
        if norm_layer == None:
            # hard to converge with out batch or instance norm
            self.block = nn.Sequential(
                nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
                nn.ReLU(inplace=True),
                nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
            )
        else:
            self.block = nn.Sequential(
                nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
                norm_layer(in_features),
                nn.ReLU(inplace=True),
                nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
                norm_layer(in_features)
            )

    def forward(self, x):
        residual = x
        out = self.block(x)
        out += residual
        out = self.relu(out)
        return out
        # return self.relu(x + self.block(x))


class ResUnetGenerator(nn.Module):
    def __init__(self, input_nc, output_nc, num_downs, ngf=64,
                 norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(ResUnetGenerator, self).__init__()
        # construct unet structure
        unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer,
                                                innermost=True)

        for i in range(num_downs - 5):
            unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
                                                    norm_layer=norm_layer, use_dropout=use_dropout)
        unet_block = ResUnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
                                                norm_layer=norm_layer)
        unet_block = ResUnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
                                                norm_layer=norm_layer)
        unet_block = ResUnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block,
                                                norm_layer=norm_layer)
        unet_block = ResUnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True,
                                                norm_layer=norm_layer)

        self.model = unet_block

    def forward(self, input):
        output = self.model(input)

        # print("\tIn Model: input size", input.size(),
        #       "output size", output.size())

        return output


# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
#   |-- downsampling -- |submodule| -- upsampling --|
class ResUnetSkipConnectionBlock(nn.Module):
    def __init__(self, outer_nc, inner_nc, input_nc=None,
                 submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
        super(ResUnetSkipConnectionBlock, self).__init__()
        self.outermost = outermost
        use_bias = norm_layer == nn.InstanceNorm2d

        if input_nc is None:
            input_nc = outer_nc
        downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=3,
                             stride=2, padding=1, bias=use_bias)
        # add two resblock
        res_downconv = [ResidualBlock(inner_nc, norm_layer), ResidualBlock(inner_nc, norm_layer)]
        res_upconv = [ResidualBlock(outer_nc, norm_layer), ResidualBlock(outer_nc, norm_layer)]

        # res_downconv = [ResidualBlock(inner_nc)]
        # res_upconv = [ResidualBlock(outer_nc)]

        downrelu = nn.ReLU(True)
        uprelu = nn.ReLU(True)
        if norm_layer != None:
            downnorm = norm_layer(inner_nc)
            upnorm = norm_layer(outer_nc)

        if outermost:
            upsample = nn.Upsample(scale_factor=2, mode='nearest')
            upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
            down = [downconv, downrelu] + res_downconv
            # up = [uprelu, upsample, upconv, upnorm]
            up = [upsample, upconv]
            model = down + [submodule] + up
        elif innermost:
            upsample = nn.Upsample(scale_factor=2, mode='nearest')
            upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
            down = [downconv, downrelu] + res_downconv
            if norm_layer == None:
                up = [upsample, upconv, uprelu] + res_upconv
            else:
                up = [upsample, upconv, upnorm, uprelu] + res_upconv
            model = down + up
        else:
            upsample = nn.Upsample(scale_factor=2, mode='nearest')
            upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
            if norm_layer == None:
                down = [downconv, downrelu] + res_downconv
                up = [upsample, upconv, uprelu] + res_upconv
            else:
                down = [downconv, downnorm, downrelu] + res_downconv
                up = [upsample, upconv, upnorm, uprelu] + res_upconv

            if use_dropout:
                model = down + [submodule] + up + [nn.Dropout(0.5)]
            else:
                model = down + [submodule] + up

        self.model = nn.Sequential(*model)

    def forward(self, x):
        if self.outermost:
            return self.model(x)
        else:
            return torch.cat([x, self.model(x)], 1)


class Vgg19(nn.Module):
    def __init__(self, requires_grad=False):
        super(Vgg19, self).__init__()
        vgg_pretrained_features = models.vgg19(pretrained=True).features
        self.slice1 = nn.Sequential()
        self.slice2 = nn.Sequential()
        self.slice3 = nn.Sequential()
        self.slice4 = nn.Sequential()
        self.slice5 = nn.Sequential()
        for x in range(2):
            self.slice1.add_module(str(x), vgg_pretrained_features[x])
        for x in range(2, 7):
            self.slice2.add_module(str(x), vgg_pretrained_features[x])
        for x in range(7, 12):
            self.slice3.add_module(str(x), vgg_pretrained_features[x])
        for x in range(12, 21):
            self.slice4.add_module(str(x), vgg_pretrained_features[x])
        for x in range(21, 30):
            self.slice5.add_module(str(x), vgg_pretrained_features[x])
        if not requires_grad:
            for param in self.parameters():
                param.requires_grad = False

    def forward(self, X):
        h_relu1 = self.slice1(X)
        h_relu2 = self.slice2(h_relu1)
        h_relu3 = self.slice3(h_relu2)
        h_relu4 = self.slice4(h_relu3)
        h_relu5 = self.slice5(h_relu4)
        out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
        return out

def gram_matrix(input):
    a, b, c, d = input.size()  # a=batch size(=1)
    # b=number of feature maps
    # (c,d)=dimensions of a f. map (N=c*d)
    features = input.view(a * b, c * d)  # resise F_XL into \hat F_XL
    G = torch.mm(features, features.t())  # compute the gram product
    # we 'normalize' the values of the gram matrix
    # by dividing by the number of element in each feature maps.
    return G.div(a * b * c * d)


class StyleLoss(nn.Module):
    def __init__(self):
        super(StyleLoss, self).__init__()

    def forward(self, x, y):
        Gx = gram_matrix(x)
        Gy = gram_matrix(y)
        return F.mse_loss(Gx, Gy) * 30000000

class VGGLoss(nn.Module):
    def __init__(self, model=None):
        super(VGGLoss, self).__init__()
        if model is None:
            self.vgg = Vgg19()
        else:
            self.vgg = model

        self.vgg.cuda()
        # self.vgg.eval()
        self.criterion = nn.L1Loss()
        self.style_criterion = StyleLoss()
        self.weights = [1.0, 1.0, 1.0, 1.0, 1.0]
        self.style_weights = [1.0, 1.0, 1.0, 1.0, 1.0]
        # self.weights = [5.0, 1.0, 0.5, 0.4, 0.8]
        # self.style_weights = [10e4, 1000, 50, 15, 50]

    def forward(self, x, y, style=False):
        x_vgg, y_vgg = self.vgg(x), self.vgg(y)
        loss = 0
        if style:
            # return both perceptual loss and style loss.
            style_loss = 0
            for i in range(len(x_vgg)):
                this_loss = (self.weights[i] *
                             self.criterion(x_vgg[i], y_vgg[i].detach()))
                this_style_loss = (self.style_weights[i] *
                                   self.style_criterion(x_vgg[i], y_vgg[i].detach()))
                loss += this_loss
                style_loss += this_style_loss
            return loss, style_loss

        for i in range(len(x_vgg)):
            this_loss = (self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()))
            loss += this_loss
        return loss


class GMM(nn.Module):
    """ Geometric Matching Module
    """

    def __init__(self, opt, input_nc):
        super(GMM, self).__init__()
        self.extractionA = FeatureExtraction(input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d)
        self.extractionB = FeatureExtraction(3, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d)
        self.l2norm = FeatureL2Norm()
        self.correlation = FeatureCorrelation()
        self.regression = FeatureRegression(input_nc=192, output_dim=2 * opt.grid_size ** 2, use_cuda=True)
        self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, use_cuda=True, grid_size=opt.grid_size)

    def forward(self, inputA, inputB):
        featureA = self.extractionA(inputA)
        featureB = self.extractionB(inputB)
        featureA = self.l2norm(featureA)
        featureB = self.l2norm(featureB)
        correlation = self.correlation(featureA, featureB)

        theta = self.regression(correlation)
        grid = self.gridGen(theta)
        return grid, theta


def save_checkpoint(model, save_path):
    if not os.path.exists(os.path.dirname(save_path)):
        os.makedirs(os.path.dirname(save_path))
    torch.save(model.state_dict(), save_path)


def load_checkpoint(model, checkpoint_path):
    if not os.path.exists(checkpoint_path):
        print('No checkpoint!')
        return

    model.load_state_dict(torch.load(checkpoint_path))

    # try:
    #     model.load_state_dict(torch.load(checkpoint_path))
    # except:
    #     model = nn.DataParallel(model)
    #     model.load_state_dict(torch.load(checkpoint_path))