Spaces:
Sleeping
Sleeping
File size: 26,686 Bytes
22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import torch
import torch.nn as nn
import torch.nn.parallel
from torch.autograd import Variable
import torch.nn.functional as F
from torchvision import models
import torch.utils.model_zoo as model_zoo
from torch.nn import init
import os
import numpy as np
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('Linear') != -1:
init.normal(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def weights_init_xavier(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.xavier_normal_(m.weight.data, gain=0.02)
elif classname.find('Linear') != -1:
init.xavier_normal_(m.weight.data, gain=0.02)
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def weights_init_kaiming(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('Linear') != -1:
init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
elif classname.find('BatchNorm2d') != -1:
init.normal_(m.weight.data, 1.0, 0.02)
init.constant_(m.bias.data, 0.0)
def init_weights(net, init_type='normal'):
print('initialization method [%s]' % init_type)
if init_type == 'normal':
net.apply(weights_init_normal)
elif init_type == 'xavier':
net.apply(weights_init_xavier)
elif init_type == 'kaiming':
net.apply(weights_init_kaiming)
else:
raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
class FeatureExtraction(nn.Module):
def __init__(self, input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(FeatureExtraction, self).__init__()
downconv = nn.Conv2d(input_nc, ngf, kernel_size=4, stride=2, padding=1)
model = [downconv, nn.ReLU(True), norm_layer(ngf)]
for i in range(n_layers):
in_ngf = 2 ** i * ngf if 2 ** i * ngf < 512 else 512
out_ngf = 2 ** (i + 1) * ngf if 2 ** i * ngf < 512 else 512
downconv = nn.Conv2d(in_ngf, out_ngf, kernel_size=4, stride=2, padding=1)
model += [downconv, nn.ReLU(True)]
model += [norm_layer(out_ngf)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
model += [norm_layer(512)]
model += [nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1), nn.ReLU(True)]
self.model = nn.Sequential(*model)
init_weights(self.model, init_type='normal')
def forward(self, x):
return self.model(x)
class FeatureL2Norm(torch.nn.Module):
def __init__(self):
super(FeatureL2Norm, self).__init__()
def forward(self, feature):
epsilon = 1e-6
norm = torch.pow(torch.sum(torch.pow(feature, 2), 1) + epsilon, 0.5).unsqueeze(1).expand_as(feature)
return torch.div(feature, norm)
class FeatureCorrelation(nn.Module):
def __init__(self):
super(FeatureCorrelation, self).__init__()
def forward(self, feature_A, feature_B):
b, c, h, w = feature_A.size()
# reshape features for matrix multiplication
feature_A = feature_A.transpose(2, 3).contiguous().view(b, c, h * w)
feature_B = feature_B.view(b, c, h * w).transpose(1, 2)
# perform matrix mult.
feature_mul = torch.bmm(feature_B, feature_A)
correlation_tensor = feature_mul.view(b, h, w, h * w).transpose(2, 3).transpose(1, 2)
return correlation_tensor
class FeatureRegression(nn.Module):
def __init__(self, input_nc=512, output_dim=6, use_cuda=True):
super(FeatureRegression, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(input_nc, 512, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 256, kernel_size=4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.linear = nn.Linear(64 * 4 * 3, output_dim)
self.tanh = nn.Tanh()
if use_cuda:
self.conv.cuda()
self.linear.cuda()
self.tanh.cuda()
def forward(self, x):
x = self.conv(x)
x = x.view(x.size(0), -1)
x = self.linear(x)
x = self.tanh(x)
return x
class AffineGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, out_ch=3):
super(AffineGridGen, self).__init__()
self.out_h = out_h
self.out_w = out_w
self.out_ch = out_ch
def forward(self, theta):
theta = theta.contiguous()
batch_size = theta.size()[0]
out_size = torch.Size((batch_size, self.out_ch, self.out_h, self.out_w))
return F.affine_grid(theta, out_size)
class TpsGridGen(nn.Module):
def __init__(self, out_h=256, out_w=192, use_regular_grid=True, grid_size=3, reg_factor=0, use_cuda=True):
super(TpsGridGen, self).__init__()
self.out_h, self.out_w = out_h, out_w
self.reg_factor = reg_factor
self.use_cuda = use_cuda
# create grid in numpy
self.grid = np.zeros([self.out_h, self.out_w, 3], dtype=np.float32)
# sampling grid with dim-0 coords (Y)
self.grid_X, self.grid_Y = np.meshgrid(np.linspace(-1, 1, out_w), np.linspace(-1, 1, out_h))
# grid_X,grid_Y: size [1,H,W,1,1]
self.grid_X = torch.FloatTensor(self.grid_X).unsqueeze(0).unsqueeze(3)
self.grid_Y = torch.FloatTensor(self.grid_Y).unsqueeze(0).unsqueeze(3)
if use_cuda:
self.grid_X = self.grid_X.cuda()
self.grid_Y = self.grid_Y.cuda()
# initialize regular grid for control points P_i
if use_regular_grid:
axis_coords = np.linspace(-1, 1, grid_size)
self.N = grid_size * grid_size
P_Y, P_X = np.meshgrid(axis_coords, axis_coords)
P_X = np.reshape(P_X, (-1, 1)) # size (N,1)
P_Y = np.reshape(P_Y, (-1, 1)) # size (N,1)
P_X = torch.FloatTensor(P_X)
P_Y = torch.FloatTensor(P_Y)
self.P_X_base = P_X.clone()
self.P_Y_base = P_Y.clone()
self.Li = self.compute_L_inverse(P_X, P_Y).unsqueeze(0)
self.P_X = P_X.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0, 4)
self.P_Y = P_Y.unsqueeze(2).unsqueeze(3).unsqueeze(4).transpose(0, 4)
if use_cuda:
self.P_X = self.P_X.cuda()
self.P_Y = self.P_Y.cuda()
self.P_X_base = self.P_X_base.cuda()
self.P_Y_base = self.P_Y_base.cuda()
def forward(self, theta):
warped_grid = self.apply_transformation(theta, torch.cat((self.grid_X, self.grid_Y), 3))
return warped_grid
def compute_L_inverse(self, X, Y):
N = X.size()[0] # num of points (along dim 0)
# construct matrix K
Xmat = X.expand(N, N)
Ymat = Y.expand(N, N)
P_dist_squared = torch.pow(Xmat - Xmat.transpose(0, 1), 2) + torch.pow(Ymat - Ymat.transpose(0, 1), 2)
P_dist_squared[P_dist_squared == 0] = 1 # make diagonal 1 to avoid NaN in log computation
K = torch.mul(P_dist_squared, torch.log(P_dist_squared))
# construct matrix L
O = torch.FloatTensor(N, 1).fill_(1)
Z = torch.FloatTensor(3, 3).fill_(0)
P = torch.cat((O, X, Y), 1)
L = torch.cat((torch.cat((K, P), 1), torch.cat((P.transpose(0, 1), Z), 1)), 0)
Li = torch.inverse(L)
if self.use_cuda:
Li = Li.cuda()
return Li
def apply_transformation(self, theta, points):
if theta.dim() == 2:
theta = theta.unsqueeze(2).unsqueeze(3)
# points should be in the [B,H,W,2] format,
# where points[:,:,:,0] are the X coords
# and points[:,:,:,1] are the Y coords
# input are the corresponding control points P_i
batch_size = theta.size()[0]
# split theta into point coordinates
Q_X = theta[:, :self.N, :, :].squeeze(3)
Q_Y = theta[:, self.N:, :, :].squeeze(3)
Q_X = Q_X + self.P_X_base.expand_as(Q_X)
Q_Y = Q_Y + self.P_Y_base.expand_as(Q_Y)
# get spatial dimensions of points
points_b = points.size()[0]
points_h = points.size()[1]
points_w = points.size()[2]
# repeat pre-defined control points along spatial dimensions of points to be transformed
P_X = self.P_X.expand((1, points_h, points_w, 1, self.N))
P_Y = self.P_Y.expand((1, points_h, points_w, 1, self.N))
# compute weigths for non-linear part
W_X = torch.bmm(self.Li[:, :self.N, :self.N].expand((batch_size, self.N, self.N)), Q_X)
W_Y = torch.bmm(self.Li[:, :self.N, :self.N].expand((batch_size, self.N, self.N)), Q_Y)
# reshape
# W_X,W,Y: size [B,H,W,1,N]
W_X = W_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
W_Y = W_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
# compute weights for affine part
A_X = torch.bmm(self.Li[:, self.N:, :self.N].expand((batch_size, 3, self.N)), Q_X)
A_Y = torch.bmm(self.Li[:, self.N:, :self.N].expand((batch_size, 3, self.N)), Q_Y)
# reshape
# A_X,A,Y: size [B,H,W,1,3]
A_X = A_X.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
A_Y = A_Y.unsqueeze(3).unsqueeze(4).transpose(1, 4).repeat(1, points_h, points_w, 1, 1)
# compute distance P_i - (grid_X,grid_Y)
# grid is expanded in point dim 4, but not in batch dim 0, as points P_X,P_Y are fixed for all batch
points_X_for_summation = points[:, :, :, 0].unsqueeze(3).unsqueeze(4).expand(
points[:, :, :, 0].size() + (1, self.N))
points_Y_for_summation = points[:, :, :, 1].unsqueeze(3).unsqueeze(4).expand(
points[:, :, :, 1].size() + (1, self.N))
if points_b == 1:
delta_X = points_X_for_summation - P_X
delta_Y = points_Y_for_summation - P_Y
else:
# use expanded P_X,P_Y in batch dimension
delta_X = points_X_for_summation - P_X.expand_as(points_X_for_summation)
delta_Y = points_Y_for_summation - P_Y.expand_as(points_Y_for_summation)
dist_squared = torch.pow(delta_X, 2) + torch.pow(delta_Y, 2)
# U: size [1,H,W,1,N]
dist_squared[dist_squared == 0] = 1 # avoid NaN in log computation
U = torch.mul(dist_squared, torch.log(dist_squared))
# expand grid in batch dimension if necessary
points_X_batch = points[:, :, :, 0].unsqueeze(3)
points_Y_batch = points[:, :, :, 1].unsqueeze(3)
if points_b == 1:
points_X_batch = points_X_batch.expand((batch_size,) + points_X_batch.size()[1:])
points_Y_batch = points_Y_batch.expand((batch_size,) + points_Y_batch.size()[1:])
points_X_prime = A_X[:, :, :, :, 0] + \
torch.mul(A_X[:, :, :, :, 1], points_X_batch) + \
torch.mul(A_X[:, :, :, :, 2], points_Y_batch) + \
torch.sum(torch.mul(W_X, U.expand_as(W_X)), 4)
points_Y_prime = A_Y[:, :, :, :, 0] + \
torch.mul(A_Y[:, :, :, :, 1], points_X_batch) + \
torch.mul(A_Y[:, :, :, :, 2], points_Y_batch) + \
torch.sum(torch.mul(W_Y, U.expand_as(W_Y)), 4)
return torch.cat((points_X_prime, points_Y_prime), 3)
# Defines the Unet generator.
# |num_downs|: number of downsamplings in UNet. For example,
# if |num_downs| == 7, image of size 128x128 will become of size 1x1
# at the bottleneck
class UnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetGenerator, self).__init__()
# construct unet structure
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer,
innermost=True)
for i in range(num_downs - 5):
unet_block = UnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = UnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer)
unet_block = UnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True,
norm_layer=norm_layer)
self.model = unet_block
def forward(self, input):
return self.model(input)
# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
# |-- downsampling -- |submodule| -- upsampling --|
class UnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(UnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=4,
stride=2, padding=1, bias=use_bias)
downrelu = nn.LeakyReLU(0.2, True)
uprelu = nn.ReLU(True)
if norm_layer != None:
downnorm = norm_layer(inner_nc)
upnorm = norm_layer(outer_nc)
if outermost:
upsample = nn.Upsample(scale_factor=2, mode='bilinear')
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downconv]
# up = [uprelu, upsample, upconv, upnorm]
up = [uprelu, upsample, upconv]
model = down + [submodule] + up
elif innermost:
upsample = nn.Upsample(scale_factor=2, mode='bilinear')
upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downrelu, downconv]
if norm_layer == None:
up = [uprelu, upsample, upconv]
else:
up = [uprelu, upsample, upconv, upnorm]
model = down + up
else:
upsample = nn.Upsample(scale_factor=2, mode='bilinear')
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
if norm_layer == None:
down = [downrelu, downconv]
up = [uprelu, upsample, upconv]
else:
down = [downrelu, downconv, downnorm]
up = [uprelu, upsample, upconv, upnorm]
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
# UNet with residual blocks
class ResidualBlock(nn.Module):
def __init__(self, in_features=64, norm_layer=nn.BatchNorm2d):
super(ResidualBlock, self).__init__()
self.relu = nn.ReLU(True)
if norm_layer == None:
# hard to converge with out batch or instance norm
self.block = nn.Sequential(
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
nn.ReLU(inplace=True),
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
)
else:
self.block = nn.Sequential(
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.Conv2d(in_features, in_features, 3, 1, 1, bias=False),
norm_layer(in_features)
)
def forward(self, x):
residual = x
out = self.block(x)
out += residual
out = self.relu(out)
return out
# return self.relu(x + self.block(x))
class ResUnetGenerator(nn.Module):
def __init__(self, input_nc, output_nc, num_downs, ngf=64,
norm_layer=nn.BatchNorm2d, use_dropout=False):
super(ResUnetGenerator, self).__init__()
# construct unet structure
unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=None, norm_layer=norm_layer,
innermost=True)
for i in range(num_downs - 5):
unet_block = ResUnetSkipConnectionBlock(ngf * 8, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer, use_dropout=use_dropout)
unet_block = ResUnetSkipConnectionBlock(ngf * 4, ngf * 8, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = ResUnetSkipConnectionBlock(ngf * 2, ngf * 4, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = ResUnetSkipConnectionBlock(ngf, ngf * 2, input_nc=None, submodule=unet_block,
norm_layer=norm_layer)
unet_block = ResUnetSkipConnectionBlock(output_nc, ngf, input_nc=input_nc, submodule=unet_block, outermost=True,
norm_layer=norm_layer)
self.model = unet_block
def forward(self, input):
output = self.model(input)
# print("\tIn Model: input size", input.size(),
# "output size", output.size())
return output
# Defines the submodule with skip connection.
# X -------------------identity---------------------- X
# |-- downsampling -- |submodule| -- upsampling --|
class ResUnetSkipConnectionBlock(nn.Module):
def __init__(self, outer_nc, inner_nc, input_nc=None,
submodule=None, outermost=False, innermost=False, norm_layer=nn.BatchNorm2d, use_dropout=False):
super(ResUnetSkipConnectionBlock, self).__init__()
self.outermost = outermost
use_bias = norm_layer == nn.InstanceNorm2d
if input_nc is None:
input_nc = outer_nc
downconv = nn.Conv2d(input_nc, inner_nc, kernel_size=3,
stride=2, padding=1, bias=use_bias)
# add two resblock
res_downconv = [ResidualBlock(inner_nc, norm_layer), ResidualBlock(inner_nc, norm_layer)]
res_upconv = [ResidualBlock(outer_nc, norm_layer), ResidualBlock(outer_nc, norm_layer)]
# res_downconv = [ResidualBlock(inner_nc)]
# res_upconv = [ResidualBlock(outer_nc)]
downrelu = nn.ReLU(True)
uprelu = nn.ReLU(True)
if norm_layer != None:
downnorm = norm_layer(inner_nc)
upnorm = norm_layer(outer_nc)
if outermost:
upsample = nn.Upsample(scale_factor=2, mode='nearest')
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downconv, downrelu] + res_downconv
# up = [uprelu, upsample, upconv, upnorm]
up = [upsample, upconv]
model = down + [submodule] + up
elif innermost:
upsample = nn.Upsample(scale_factor=2, mode='nearest')
upconv = nn.Conv2d(inner_nc, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
down = [downconv, downrelu] + res_downconv
if norm_layer == None:
up = [upsample, upconv, uprelu] + res_upconv
else:
up = [upsample, upconv, upnorm, uprelu] + res_upconv
model = down + up
else:
upsample = nn.Upsample(scale_factor=2, mode='nearest')
upconv = nn.Conv2d(inner_nc * 2, outer_nc, kernel_size=3, stride=1, padding=1, bias=use_bias)
if norm_layer == None:
down = [downconv, downrelu] + res_downconv
up = [upsample, upconv, uprelu] + res_upconv
else:
down = [downconv, downnorm, downrelu] + res_downconv
up = [upsample, upconv, upnorm, uprelu] + res_upconv
if use_dropout:
model = down + [submodule] + up + [nn.Dropout(0.5)]
else:
model = down + [submodule] + up
self.model = nn.Sequential(*model)
def forward(self, x):
if self.outermost:
return self.model(x)
else:
return torch.cat([x, self.model(x)], 1)
class Vgg19(nn.Module):
def __init__(self, requires_grad=False):
super(Vgg19, self).__init__()
vgg_pretrained_features = models.vgg19(pretrained=True).features
self.slice1 = nn.Sequential()
self.slice2 = nn.Sequential()
self.slice3 = nn.Sequential()
self.slice4 = nn.Sequential()
self.slice5 = nn.Sequential()
for x in range(2):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(2, 7):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(7, 12):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(12, 21):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(21, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h_relu1 = self.slice1(X)
h_relu2 = self.slice2(h_relu1)
h_relu3 = self.slice3(h_relu2)
h_relu4 = self.slice4(h_relu3)
h_relu5 = self.slice5(h_relu4)
out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5]
return out
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
class StyleLoss(nn.Module):
def __init__(self):
super(StyleLoss, self).__init__()
def forward(self, x, y):
Gx = gram_matrix(x)
Gy = gram_matrix(y)
return F.mse_loss(Gx, Gy) * 30000000
class VGGLoss(nn.Module):
def __init__(self, model=None):
super(VGGLoss, self).__init__()
if model is None:
self.vgg = Vgg19()
else:
self.vgg = model
self.vgg.cuda()
# self.vgg.eval()
self.criterion = nn.L1Loss()
self.style_criterion = StyleLoss()
self.weights = [1.0, 1.0, 1.0, 1.0, 1.0]
self.style_weights = [1.0, 1.0, 1.0, 1.0, 1.0]
# self.weights = [5.0, 1.0, 0.5, 0.4, 0.8]
# self.style_weights = [10e4, 1000, 50, 15, 50]
def forward(self, x, y, style=False):
x_vgg, y_vgg = self.vgg(x), self.vgg(y)
loss = 0
if style:
# return both perceptual loss and style loss.
style_loss = 0
for i in range(len(x_vgg)):
this_loss = (self.weights[i] *
self.criterion(x_vgg[i], y_vgg[i].detach()))
this_style_loss = (self.style_weights[i] *
self.style_criterion(x_vgg[i], y_vgg[i].detach()))
loss += this_loss
style_loss += this_style_loss
return loss, style_loss
for i in range(len(x_vgg)):
this_loss = (self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()))
loss += this_loss
return loss
class GMM(nn.Module):
""" Geometric Matching Module
"""
def __init__(self, opt, input_nc):
super(GMM, self).__init__()
self.extractionA = FeatureExtraction(input_nc, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d)
self.extractionB = FeatureExtraction(3, ngf=64, n_layers=3, norm_layer=nn.BatchNorm2d)
self.l2norm = FeatureL2Norm()
self.correlation = FeatureCorrelation()
self.regression = FeatureRegression(input_nc=192, output_dim=2 * opt.grid_size ** 2, use_cuda=True)
self.gridGen = TpsGridGen(opt.fine_height, opt.fine_width, use_cuda=True, grid_size=opt.grid_size)
def forward(self, inputA, inputB):
featureA = self.extractionA(inputA)
featureB = self.extractionB(inputB)
featureA = self.l2norm(featureA)
featureB = self.l2norm(featureB)
correlation = self.correlation(featureA, featureB)
theta = self.regression(correlation)
grid = self.gridGen(theta)
return grid, theta
def save_checkpoint(model, save_path):
if not os.path.exists(os.path.dirname(save_path)):
os.makedirs(os.path.dirname(save_path))
torch.save(model.state_dict(), save_path)
def load_checkpoint(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print('No checkpoint!')
return
model.load_state_dict(torch.load(checkpoint_path))
# try:
# model.load_state_dict(torch.load(checkpoint_path))
# except:
# model = nn.DataParallel(model)
# model.load_state_dict(torch.load(checkpoint_path))
|