Spaces:
Sleeping
Sleeping
File size: 6,178 Bytes
22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import os, glob
import numpy as np
import cv2
import argparse
import platform
import torch
from util.utils import try_mkdir
from approaches.train_speaker_aware import Speaker_aware_branch
if platform.release() == '4.4.0-83-generic':
ROOT_DIR = r'/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2'
else: # 3.10.0-957.21.2.el7.x86_64
ROOT_DIR = r'/mnt/nfs/work1/kalo/yangzhou/TalkingToon/VoxCeleb2'
DEMO_CH = ''
parser = argparse.ArgumentParser()
parser.add_argument('--nepoch', type=int, default=1001, help='number of epochs to train for')
parser.add_argument('--batch_size', type=int, default=1, help='batch size')
parser.add_argument('--in_batch_nepoch', type=int, default=1, help='')
parser.add_argument('--first_in_batch_nepoch', type=int, default=1, help='')
parser.add_argument('--segment_batch_size', type=int, default=512, help='batch size')
parser.add_argument('--num_window_frames', type=int, default=18, help='')
parser.add_argument('--num_window_frames_seq', type=int, default=18, help='')
parser.add_argument('--num_window_frames_sync', type=int, default=18, help='')
parser.add_argument('--num_window_step', type=int, default=1, help='')
parser.add_argument('--dump_dir', type=str, default='', help='')
parser.add_argument('--dump_file_name', type=str, default='celeb_normrot', help='')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')
parser.add_argument('--drop_out', type=float, default=0, help='drop out')
parser.add_argument('--verbose', type=int, default=1, help='0 - detail, 2 - simplify')
parser.add_argument('--write', default=False, action='store_true')
parser.add_argument('--add_pos', default=False, action='store_true')
parser.add_argument('--use_motion_loss', default=False, action='store_true')
parser.add_argument('--name', type=str, default='tmp')
parser.add_argument('--puppet_name', type=str, default=DEMO_CH)
parser.add_argument('--in_size', type=int, default=80)
parser.add_argument('--use_lip_weight', default=False, action='store_true')
parser.add_argument('--use_adain', default=False, action='store_true')
parser.add_argument('--use_residual', default=False, action='store_true')
parser.add_argument('--use_norm_emb', default=False, action='store_true')
parser.add_argument('--use_cycle_loss', default=False, action='store_true')
parser.add_argument('--lambda_cycle_loss', default=1.0, type=float)
parser.add_argument('--emb_coef', default=3.0, type=float)
parser.add_argument('--freeze_content_emb', default=False, action='store_true')
parser.add_argument('--pretrain_g', default=False, action='store_true')
parser.add_argument('--spk_emb_enc_size', default=16, type=int)
parser.add_argument('--c_enc_hidden_size', default=256, type=int)
parser.add_argument('--lstm_g_hidden_size', default=256, type=int)
parser.add_argument('--projection_size', default=512, type=int)
parser.add_argument('--use_addinfo_format', default='motion_and_pos')
parser.add_argument('--l2_on_fls_without_traj', default=False, action='store_true')
parser.add_argument('--train_with_grad_penalty', default=False, action='store_true')
parser.add_argument('--train_DL', default=-1.0, type=float)
parser.add_argument('--train_DT', default=-1.0, type=float)
parser.add_argument('--train_G_only', default=False, action='store_true')
parser.add_argument('--lambda_mse_loss', default=1.0, type=float)
parser.add_argument('--teacher_force', default=0.0, type=float)
parser.add_argument('--debug_version', default='', type=str)
parser.add_argument('--lambda_add_info_loss', default=1.0, type=float)
parser.add_argument('--show_animation', default=False, action='store_true')
# model
parser.add_argument('--pos_dim', default=7, type=int)
parser.add_argument('--use_prior_net', default=True, action='store_true')
parser.add_argument('--transformer_d_model', default=32, type=int)
parser.add_argument('--transformer_N', default=2, type=int)
parser.add_argument('--transformer_heads', default=2, type=int)
parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_audio2landmark_c.pth')
parser.add_argument('--init_content_encoder', type=str, default='MakeItTalk/examples/ckpt/ckpt_audio2landmark_c.pth') # 'tt_lipwpre_prior_useclose/ckpt_last_epoch_20.pth')
parser.add_argument('--load_a2l_G_name', type=str, default='/mnt/ntfs/Dataset/TalkingToon/VoxCeleb2/ckpt/local_da_merge_3/ckpt_e_50.pth') #
# data
parser.add_argument('--use_11spk_only', default=True, action='store_true')
# arch
parser.add_argument('--use_reg_as_std', default=True, action='store_false')
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)
# test
parser.add_argument('--test_emb', default=False, action='store_true')
parser.add_argument('--train', default=False, action='store_true')
parser.add_argument('--test_end2end', default=False, action='store_true')
# save model
parser.add_argument('--jpg_freq', type=int, default=25, help='')
parser.add_argument('--ckpt_epoch_freq', type=int, default=25, help='')
AMP = {'default':[2.5, 2.5, 1.0]}
if(DEMO_CH not in AMP.keys()):
AMP[DEMO_CH] = AMP['default']
parser.add_argument('--amp_lip_x', type=float, default=AMP[DEMO_CH][0])
parser.add_argument('--amp_lip_y', type=float, default=AMP[DEMO_CH][1])
parser.add_argument('--amp_pos', type=float, default=AMP[DEMO_CH][2])
opt_parser = parser.parse_args()
root_dir = ROOT_DIR
opt_parser.root_dir = ROOT_DIR
opt_parser.dump_dir = os.path.join(root_dir, 'dump')
opt_parser.ckpt_dir = os.path.join(root_dir, 'ckpt', opt_parser.name)
try_mkdir(opt_parser.ckpt_dir)
opt_parser.log_dir = os.path.join(root_dir, 'log')
# make directory for nn outputs
try_mkdir(opt_parser.dump_dir.replace('dump','nn_result'))
try_mkdir(os.path.join(opt_parser.dump_dir.replace('dump', 'nn_result'), opt_parser.name))
model = Speaker_aware_branch(opt_parser)
if(opt_parser.train):
model.train()
else:
model.test() |