Spaces:
Sleeping
Sleeping
File size: 12,271 Bytes
dd38ad1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import os
from scipy.io import loadmat
from menpo.shape.pointcloud import PointCloud
from menpo.transform import ThinPlateSplines
import menpo.transform as mt
import menpo.io as mio
from glob import glob
from thirdparty.face_of_art.deformation_functions import *
# landmark indices by facial feature
jaw_indices = np.arange(0, 17)
lbrow_indices = np.arange(17, 22)
rbrow_indices = np.arange(22, 27)
upper_nose_indices = np.arange(27, 31)
lower_nose_indices = np.arange(31, 36)
leye_indices = np.arange(36, 42)
reye_indices = np.arange(42, 48)
outer_mouth_indices = np.arange(48, 60)
inner_mouth_indices = np.arange(60, 68)
# flipped landmark indices
mirrored_parts_68 = np.hstack([
jaw_indices[::-1], rbrow_indices[::-1], lbrow_indices[::-1],
upper_nose_indices, lower_nose_indices[::-1],
np.roll(reye_indices[::-1], 4), np.roll(leye_indices[::-1], 4),
np.roll(outer_mouth_indices[::-1], 7),
np.roll(inner_mouth_indices[::-1], 5)
])
def load_bb_files(bb_file_dirs):
"""load bounding box mat file for challenging, common, full & training datasets"""
bb_files_dict = {}
for bb_file in bb_file_dirs:
bb_mat = loadmat(bb_file)['bounding_boxes']
num_imgs = np.max(bb_mat.shape)
for i in range(num_imgs):
name = bb_mat[0][i][0][0][0][0]
bb_init = bb_mat[0][i][0][0][1] - 1 # matlab indicies
bb_gt = bb_mat[0][i][0][0][2] - 1 # matlab indicies
if str(name) in bb_files_dict.keys():
print (str(name) + ' already exists')
else:
bb_files_dict[str(name)] = (bb_init, bb_gt)
return bb_files_dict
def load_bb_dictionary(bb_dir, mode, test_data='full'):
"""create bounding box dictionary of input dataset: train/common/full/challenging"""
if mode == 'TRAIN':
bb_dirs = \
['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']
else:
if test_data == 'common':
bb_dirs = \
['bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']
elif test_data == 'challenging':
bb_dirs = ['bounding_boxes_ibug.mat']
elif test_data == 'full':
bb_dirs = \
['bounding_boxes_ibug.mat', 'bounding_boxes_helen_testset.mat', 'bounding_boxes_lfpw_testset.mat']
elif test_data == 'training':
bb_dirs = \
['bounding_boxes_afw.mat', 'bounding_boxes_helen_trainset.mat', 'bounding_boxes_lfpw_trainset.mat']
else:
bb_dirs = None
if mode == 'TEST' and test_data not in ['full', 'challenging', 'common', 'training']:
bb_files_dict = None
else:
bb_dirs = [os.path.join(bb_dir, dataset) for dataset in bb_dirs]
bb_files_dict = load_bb_files(bb_dirs)
return bb_files_dict
def center_margin_bb(bb, img_bounds, margin=0.25):
"""create new bounding box with input margin"""
bb_size = ([bb[0, 2] - bb[0, 0], bb[0, 3] - bb[0, 1]])
margins = (np.max(bb_size) * (1 + margin) - bb_size) / 2
bb_new = np.zeros_like(bb)
bb_new[0, 0] = np.maximum(bb[0, 0] - margins[0], 0)
bb_new[0, 2] = np.minimum(bb[0, 2] + margins[0], img_bounds[1])
bb_new[0, 1] = np.maximum(bb[0, 1] - margins[1], 0)
bb_new[0, 3] = np.minimum(bb[0, 3] + margins[1], img_bounds[0])
return bb_new
def crop_to_face_image(img, bb_dictionary=None, gt=True, margin=0.25, image_size=256, normalize=True,
return_transform=False):
"""crop face image using bounding box dictionary, or GT landmarks"""
name = img.path.name
img_bounds = img.bounds()[1]
# if there is no bounding-box dict and GT landmarks are available, use it to determine the bounding box
if bb_dictionary is None and img.has_landmarks:
grp_name = img.landmarks.group_labels[0]
bb_menpo = img.landmarks[grp_name].bounding_box().points
bb = np.array([[bb_menpo[0, 1], bb_menpo[0, 0], bb_menpo[2, 1], bb_menpo[2, 0]]])
elif bb_dictionary is not None:
if gt:
bb = bb_dictionary[name][1] # ground truth
else:
bb = bb_dictionary[name][0] # init from face detector
else:
bb = None
if bb is not None:
# add margin to bounding box
bb = center_margin_bb(bb, img_bounds, margin=margin)
bb_pointcloud = PointCloud(np.array([[bb[0, 1], bb[0, 0]],
[bb[0, 3], bb[0, 0]],
[bb[0, 3], bb[0, 2]],
[bb[0, 1], bb[0, 2]]]))
if return_transform:
face_crop, bb_transform = img.crop_to_pointcloud(bb_pointcloud, return_transform=True)
else:
face_crop = img.crop_to_pointcloud(bb_pointcloud)
else:
# if there is no bounding box/gt landmarks, use entire image
face_crop = img.copy()
bb_transform = None
# if face crop is not a square - pad borders with mean pixel value
h, w = face_crop.shape
diff = h - w
if diff < 0:
face_crop.pixels = np.pad(face_crop.pixels, ((0, 0), (0, -1 * diff), (0, 0)), 'mean')
elif diff > 0:
face_crop.pixels = np.pad(face_crop.pixels, ((0, 0), (0, 0), (0, diff)), 'mean')
if return_transform:
face_crop, rescale_transform = face_crop.resize([image_size, image_size], return_transform=True)
if bb_transform is None:
transform_chain = rescale_transform
else:
transform_chain = mt.TransformChain(transforms=(rescale_transform, bb_transform))
else:
face_crop = face_crop.resize([image_size, image_size])
if face_crop.n_channels == 4:
face_crop.pixels = face_crop.pixels[:3, :, :]
if normalize:
face_crop.pixels = face_crop.rescale_pixels(0., 1.).pixels
if return_transform:
return face_crop, transform_chain
else:
return face_crop
def augment_face_image(img, image_size=256, crop_size=248, angle_range=30, flip=True):
"""basic image augmentation: random crop, rotation and horizontal flip"""
# taken from MDM: https://github.com/trigeorgis/mdm
def mirror_landmarks_68(lms, im_size):
return PointCloud(abs(np.array([0, im_size[1]]) - lms.as_vector(
).reshape(-1, 2))[mirrored_parts_68])
# taken from MDM: https://github.com/trigeorgis/mdm
def mirror_image(im):
im = im.copy()
im.pixels = im.pixels[..., ::-1].copy()
for group in im.landmarks:
lms = im.landmarks[group]
if lms.points.shape[0] == 68:
im.landmarks[group] = mirror_landmarks_68(lms, im.shape)
return im
flip_rand = np.random.random() > 0.5
# rot_rand = np.random.random() > 0.5
# crop_rand = np.random.random() > 0.5
rot_rand = True # like ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
crop_rand = True # like ECT: https://github.com/HongwenZhang/ECT-FaceAlignment
if crop_rand:
lim = image_size - crop_size
min_crop_inds = np.random.randint(0, lim, 2)
max_crop_inds = min_crop_inds + crop_size
img = img.crop(min_crop_inds, max_crop_inds)
if flip and flip_rand:
img = mirror_image(img)
if rot_rand:
rot_angle = 2 * angle_range * np.random.random_sample() - angle_range
img = img.rotate_ccw_about_centre(rot_angle)
img = img.resize([image_size, image_size])
return img
def augment_menpo_img_ns(img, img_dir_ns, p_ns=0.):
"""texture style image augmentation using stylized copies in *img_dir_ns*"""
img = img.copy()
if p_ns > 0.5:
ns_augs = glob(os.path.join(img_dir_ns, img.path.name.split('.')[0] + '_ns*'))
num_augs = len(ns_augs)
if num_augs > 0:
ns_ind = np.random.randint(0, num_augs)
ns_aug = mio.import_image(ns_augs[ns_ind])
ns_pixels = ns_aug.pixels
img.pixels = ns_pixels
return img
def augment_menpo_img_geom(img, p_geom=0.):
"""geometric style image augmentation using random face deformations"""
img = img.copy()
if p_geom > 0.5:
grp_name = img.landmarks.group_labels[0]
lms_geom_warp = deform_face_geometric_style(img.landmarks[grp_name].points.copy(), p_scale=p_geom, p_shift=p_geom)
img = warp_face_image_tps(img, PointCloud(lms_geom_warp), grp_name)
return img
def warp_face_image_tps(img, new_shape, lms_grp_name='PTS', warp_mode='constant'):
"""warp image to new landmarks using TPS interpolation"""
tps = ThinPlateSplines(new_shape, img.landmarks[lms_grp_name])
try:
img_warp = img.warp_to_shape(img.shape, tps, mode=warp_mode)
img_warp.landmarks[lms_grp_name] = new_shape
return img_warp
except np.linalg.linalg.LinAlgError as err:
print ('Error:'+str(err)+'\nUsing original landmarks for:\n'+str(img.path))
return img
def load_menpo_image_list(
img_dir, train_crop_dir, img_dir_ns, mode, bb_dictionary=None, image_size=256, margin=0.25,
bb_type='gt', test_data='full', augment_basic=True, augment_texture=False, p_texture=0,
augment_geom=False, p_geom=0, verbose=False, return_transform=False):
"""load images from image dir to create menpo-type image list"""
def crop_to_face_image_gt(img):
return crop_to_face_image(img, bb_dictionary, gt=True, margin=margin, image_size=image_size,
return_transform=return_transform)
def crop_to_face_image_init(img):
return crop_to_face_image(img, bb_dictionary, gt=False, margin=margin, image_size=image_size,
return_transform=return_transform)
def crop_to_face_image_test(img):
return crop_to_face_image(img, bb_dictionary=None, margin=margin, image_size=image_size,
return_transform=return_transform)
def augment_menpo_img_ns_rand(img):
return augment_menpo_img_ns(img, img_dir_ns, p_ns=1. * (np.random.rand() < p_texture)[0])
def augment_menpo_img_geom_rand(img):
return augment_menpo_img_geom(img, p_geom=1. * (np.random.rand() < p_geom)[0])
if mode is 'TRAIN':
if train_crop_dir is None:
img_set_dir = os.path.join(img_dir, 'training')
out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)
if bb_type is 'gt':
out_image_list = out_image_list.map(crop_to_face_image_gt)
elif bb_type is 'init':
out_image_list = out_image_list.map(crop_to_face_image_init)
else:
img_set_dir = os.path.join(img_dir, train_crop_dir)
out_image_list = mio.import_images(img_set_dir, verbose=verbose)
# perform image augmentation
if augment_texture and p_texture > 0:
out_image_list = out_image_list.map(augment_menpo_img_ns_rand)
if augment_geom and p_geom > 0:
out_image_list = out_image_list.map(augment_menpo_img_geom_rand)
if augment_basic:
out_image_list = out_image_list.map(augment_face_image)
else: # if mode is 'TEST', load test data
if test_data in ['full', 'challenging', 'common', 'training', 'test']:
img_set_dir = os.path.join(img_dir, test_data)
out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)
if bb_type is 'gt':
out_image_list = out_image_list.map(crop_to_face_image_gt)
elif bb_type is 'init':
out_image_list = out_image_list.map(crop_to_face_image_init)
else:
img_set_dir = os.path.join(img_dir, test_data+'*')
out_image_list = mio.import_images(img_set_dir, verbose=verbose, normalize=False)
out_image_list = out_image_list.map(crop_to_face_image_test)
return out_image_list
|