File size: 16,507 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""
 # Copyright 2020 Adobe
 # All Rights Reserved.
 
 # NOTICE: Adobe permits you to use, modify, and distribute this file in
 # accordance with the terms of the Adobe license agreement accompanying
 # it.
 
"""

import torch
import torch.nn as nn
import torch.nn.parallel
import torch.utils.data
import math
import torch.nn.functional as F
import copy
import numpy as np

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

AUDIO_FEAT_SIZE = 161
FACE_ID_FEAT_SIZE = 204
EPSILON = 1e-40

class Embedder(nn.Module):
    def __init__(self, feat_size, d_model):
        super().__init__()
        self.embed = nn.Linear(feat_size, d_model)
    def forward(self, x):
        return self.embed(x)


class PositionalEncoder(nn.Module):
    def __init__(self, d_model, max_seq_len=512):
        super().__init__()
        self.d_model = d_model

        # create constant 'pe' matrix with values dependant on
        # pos and i
        pe = torch.zeros(max_seq_len, d_model)
        for pos in range(max_seq_len):
            for i in range(0, d_model, 2):
                pe[pos, i] = \
                    math.sin(pos / (10000 ** ((2 * i) / d_model)))
                pe[pos, i + 1] = \
                    math.cos(pos / (10000 ** ((2 * (i + 1)) / d_model)))

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)


    def forward(self, x):
        # make embeddings relatively larger
        x = x * math.sqrt(self.d_model)
        # add constant to embedding
        seq_len = x.size(1)
        x = x + self.pe[:, :seq_len].clone().detach().to(device)
        return x


def attention(q, k, v, d_k, mask=None, dropout=None):

    scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
    if mask is not None:
        mask = mask.unsqueeze(1)
        scores = scores.masked_fill(mask == 0, -1e9)
    scores = F.softmax(scores, dim=-1)

    if dropout is not None:
        scores = dropout(scores)

    output = torch.matmul(scores, v)
    return output


class MultiHeadAttention(nn.Module):
    def __init__(self, heads, d_model, dropout=0.1):
        super().__init__()

        self.d_model = d_model
        self.d_k = d_model // heads
        self.h = heads

        self.q_linear = nn.Linear(d_model, d_model)
        self.v_linear = nn.Linear(d_model, d_model)
        self.k_linear = nn.Linear(d_model, d_model)
        self.dropout = nn.Dropout(dropout)
        self.out = nn.Linear(d_model, d_model)

    def forward(self, q, k, v, mask=None):
        bs = q.size(0)

        # perform linear operation and split into h heads

        k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
        q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
        v = self.v_linear(v).view(bs, -1, self.h, self.d_k)

        # transpose to get dimensions bs * h * sl * d_model

        k = k.transpose(1, 2)
        q = q.transpose(1, 2)
        v = v.transpose(1, 2)

        # calculate attention using function we will define next
        scores = attention(q, k, v, self.d_k, mask, self.dropout)

        # concatenate heads and put through final linear layer
        concat = scores.transpose(1, 2).contiguous() \
            .view(bs, -1, self.d_model)

        output = self.out(concat)

        return output

class FeedForward(nn.Module):
    def __init__(self, d_model, d_ff=2048, dropout = 0.1):
        super().__init__()
        # We set d_ff as a default to 2048
        self.linear_1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear_2 = nn.Linear(d_ff, d_model)
    def forward(self, x):
        x = self.dropout(F.relu(self.linear_1(x)))
        x = self.linear_2(x)
        return x


class Norm(nn.Module):
    def __init__(self, d_model, eps=1e-6):
        super().__init__()

        self.size = d_model
        # create two learnable parameters to calibrate normalisation
        self.alpha = nn.Parameter(torch.ones(self.size))
        self.bias = nn.Parameter(torch.zeros(self.size))
        self.eps = eps

    def forward(self, x):
        norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
               / (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
        return norm

# build an encoder layer with one multi-head attention layer and one # feed-forward layer
class EncoderLayer(nn.Module):
    def __init__(self, d_model, heads, dropout=0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.attn = MultiHeadAttention(heads, d_model)
        self.ff = FeedForward(d_model)
        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)

    def forward(self, x, mask):
        x2 = self.norm_1(x)
        x = x + self.dropout_1(self.attn(x2, x2, x2, mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.ff(x2))
        return x

    # build a decoder layer with two multi-head attention layers and
    # one feed-forward layer
class DecoderLayer(nn.Module):
    def __init__(self, d_model, heads, dropout=0.1):
        super().__init__()
        self.norm_1 = Norm(d_model)
        self.norm_2 = Norm(d_model)
        self.norm_3 = Norm(d_model)

        self.dropout_1 = nn.Dropout(dropout)
        self.dropout_2 = nn.Dropout(dropout)
        self.dropout_3 = nn.Dropout(dropout)

        self.attn_1 = MultiHeadAttention(heads, d_model)
        self.attn_2 = MultiHeadAttention(heads, d_model)
        self.ff = FeedForward(d_model).cuda()

    def forward(self, x, e_outputs, src_mask, trg_mask):
        x2 = self.norm_1(x)

        x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
        x2 = self.norm_2(x)
        x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs, src_mask))
        x2 = self.norm_3(x)
        x = x + self.dropout_3(self.ff(x2))
        return x

    # We can then build a convenient cloning function that can generate multiple layers:
def get_clones(module, N):
    return nn.ModuleList([copy.deepcopy(module) for i in range(N)])


class Encoder(nn.Module):
    def __init__(self, d_model, N, heads, in_size):
        super().__init__()
        self.N = N
        self.embed = Embedder(in_size, d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(EncoderLayer(d_model, heads), N)
        self.norm = Norm(d_model)

    def forward(self, x, mask=None):
        x = self.embed(x)
        x = self.pe(x)
        for i in range(self.N):
            x = self.layers[i](x, mask)
        return self.norm(x)


class Decoder(nn.Module):
    def __init__(self, d_model, N, heads, in_size):
        super().__init__()
        self.N = N
        self.embed = Embedder(in_size, d_model)
        self.pe = PositionalEncoder(d_model)
        self.layers = get_clones(DecoderLayer(d_model, heads), N)
        self.norm = Norm(d_model)

    def forward(self, x, e_outputs, src_mask=None, trg_mask=None):
        x = self.embed(x)
        x = self.pe(x)
        for i in range(self.N):
            x = self.layers[i](x, e_outputs, src_mask, trg_mask)
        return self.norm(x)


class Audio2landmark_speaker_aware_old(nn.Module):

    def __init__(self, spk_emb_enc_size=128,
                 transformer_d_model=32, N=2, heads=2,
                 pos_dim=9,
                 use_prior_net=False, is_noautovc=False):
        super(Audio2landmark_speaker_aware, self).__init__()

        self.pos_dim = pos_dim

        audio_feat_size = 80 if not use_prior_net else 161
        audio_feat_size = 258 if is_noautovc else audio_feat_size

        # init audio encoder with content model
        self.use_prior_net = use_prior_net
        self.fc_prior = nn.Sequential(
            nn.Linear(in_features=audio_feat_size, out_features=256),
            nn.BatchNorm1d(256),
            nn.LeakyReLU(0.2),
            nn.Linear(256, 161),
        )

        self.audio_feat_size = audio_feat_size
        self.bilstm = nn.LSTM(input_size=161,
                                             hidden_size=256,
                                             num_layers=3,
                                             dropout=0.5,
                                             bidirectional=False,
                                             batch_first=True)

        ''' original version '''
        self.spk_emb_encoder = nn.Sequential(
            nn.Linear(in_features=256, out_features=256),
            nn.LeakyReLU(0.02),
            nn.Linear(256, 128),
            nn.LeakyReLU(0.02),
            nn.Linear(128, spk_emb_enc_size),
        )

        d_model = transformer_d_model * heads
        N = N
        heads = heads
        self.d_model = d_model

        self.encoder = Encoder(d_model, N, heads, in_size=256)
        self.decoder = Decoder(d_model, N, heads, in_size=256)


        self.out_fls_2 = nn.Sequential(
            nn.Linear(in_features=d_model + 204, out_features=512),
            nn.LeakyReLU(0.02),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.02),
            nn.Linear(256, 204),
        )

        self.out_pos_2 = nn.Sequential(
            nn.Linear(in_features=d_model, out_features=32),
            nn.LeakyReLU(0.02),
            nn.Linear(32, 16),
            nn.LeakyReLU(0.02),
            nn.Linear(16, self.pos_dim),
        )


    def forward(self, au, face_id):

        ''' original version '''
        # audio
        inputs = au
        if (self.use_prior_net):
            inputs = self.fc_prior(inputs.contiguous().view(-1, self.audio_feat_size))
            inputs = inputs.view(-1, 18, 161)

        audio_encode, (_, _) = self.bilstm(inputs)
        audio_encode = audio_encode[:, -1, :]



        # multi-attention
        comb_encode = audio_encode
        src_feat = comb_encode.unsqueeze(0)
        e_outputs = self.encoder(src_feat)[0]
        # e_outputs = comb_encode

        fl_input = e_outputs #[:, 0:self.d_model//4*3]
        pos_input = e_outputs #[:, self.d_model//4*3:]

        fl_input = torch.cat([fl_input, face_id], dim=1)
        fl_pred = self.out_fls_2(fl_input)
        pos_pred = self.out_pos_2(pos_input)

        return fl_pred, pos_pred, face_id[0:1, :], None


class Audio2landmark_speaker_aware(nn.Module):

    def __init__(self, audio_feat_size=80, c_enc_hidden_size=256, num_layers=3, drop_out=0,
                 spk_feat_size=256, spk_emb_enc_size=128, lstm_g_win_size=64, add_info_size=6,
                 transformer_d_model=32, N=2, heads=2, z_size=128, audio_dim=256):
        super(Audio2landmark_speaker_aware, self).__init__()

        self.lstm_g_win_size = lstm_g_win_size
        self.add_info_size = add_info_size
        comb_mlp_size = c_enc_hidden_size * 2

        self.audio_content_encoder = nn.LSTM(input_size=audio_feat_size,
                                             hidden_size=c_enc_hidden_size,
                                             num_layers=num_layers,
                                             dropout=drop_out,
                                             bidirectional=False,
                                             batch_first=True)

        self.use_audio_projection = not (audio_dim == c_enc_hidden_size)
        if(self.use_audio_projection):
            self.audio_projection = nn.Sequential(
                nn.Linear(in_features=c_enc_hidden_size, out_features=256),
                nn.LeakyReLU(0.02),
                nn.Linear(256, 128),
                nn.LeakyReLU(0.02),
                nn.Linear(128, audio_dim),
            )


        ''' original version '''
        self.spk_emb_encoder = nn.Sequential(
            nn.Linear(in_features=spk_feat_size, out_features=256),
            nn.LeakyReLU(0.02),
            nn.Linear(256, 128),
            nn.LeakyReLU(0.02),
            nn.Linear(128, spk_emb_enc_size),
        )

        d_model = transformer_d_model * heads
        N = N
        heads = heads

        self.encoder = Encoder(d_model, N, heads, in_size=audio_dim + spk_emb_enc_size + z_size)
        self.decoder = Decoder(d_model, N, heads, in_size=204)
        self.out = nn.Sequential(
            nn.Linear(in_features=d_model + z_size, out_features=512),
            nn.LeakyReLU(0.02),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.02),
            nn.Linear(256, 204),
        )


    def forward(self, au, emb, face_id, add_z_spk=False, another_emb=None):

        # audio
        audio_encode, (_, _) = self.audio_content_encoder(au)
        audio_encode = audio_encode[:, -1, :]

        if(self.use_audio_projection):
            audio_encode = self.audio_projection(audio_encode)

        # spk
        spk_encode = self.spk_emb_encoder(emb)
        if(add_z_spk):
            z_spk = torch.tensor(torch.randn(spk_encode.shape)*0.01, requires_grad=False, dtype=torch.float).to(device)
            spk_encode = spk_encode + z_spk

        # comb
        z = torch.tensor(torch.zeros(au.shape[0], 128), requires_grad=False, dtype=torch.float).to(device)
        comb_encode = torch.cat((audio_encode, spk_encode, z), dim=1)
        src_feat = comb_encode.unsqueeze(0)

        e_outputs = self.encoder(src_feat)[0]

        e_outputs = torch.cat((e_outputs, z), dim=1)

        fl_pred = self.out(e_outputs)

        return fl_pred, face_id[0:1, :], spk_encode



def nopeak_mask(size):
    np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8')
    np_mask = torch.tensor(torch.from_numpy(np_mask) == 0)
    np_mask = np_mask.to(device)
    return np_mask


def create_masks(src, trg):
    src_mask = (src != torch.zeros_like(src, requires_grad=False))

    if trg is not None:
        size = trg.size(1)  # get seq_len for matrix
        np_mask = nopeak_mask(size)
        np_mask = np_mask.to(device)
        trg_mask = np_mask

    else:
        trg_mask = None
    return src_mask, trg_mask



class Transformer_DT(nn.Module):
    def __init__(self, transformer_d_model=32, N=2, heads=2, spk_emb_enc_size=128):
        super(Transformer_DT, self).__init__()
        d_model = transformer_d_model * heads
        self.encoder = Encoder(d_model, N, heads, in_size=204 + spk_emb_enc_size)
        self.out = nn.Sequential(
            nn.Linear(in_features=d_model, out_features=512),
            nn.LeakyReLU(0.02),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.02),
            nn.Linear(256, 1),
        )

    def forward(self, fls, spk_emb, win_size=64, win_step=16):
        feat = torch.cat((fls, spk_emb), dim=1)

        win_size = feat.shape[0]-1 if feat.shape[0] <= win_size else win_size
        D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size, win_step)]
        D_input = torch.stack(D_input, dim=0)
        D_output = self.encoder(D_input)
        D_output = torch.max(D_output, dim=1, keepdim=False)[0]
        d = self.out(D_output)
        # d = torch.sigmoid(d)
        return d


class TalkingToon_spk2res_lstmgan_DT(nn.Module):
    def __init__(self, comb_emb_size=256, lstm_g_hidden_size=256, num_layers=3, drop_out=0, input_size=6):
        super(TalkingToon_spk2res_lstmgan_DT, self).__init__()

        self.fl_DT = nn.GRU(input_size=comb_emb_size + FACE_ID_FEAT_SIZE,
                                             hidden_size=lstm_g_hidden_size,
                                             num_layers=3,
                                             dropout=0,
                                             bidirectional=False,
                                             batch_first=True)
        self.projection = nn.Sequential(
            nn.Linear(in_features=lstm_g_hidden_size, out_features=512),
            nn.LeakyReLU(0.02),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.02),
            nn.Linear(256, 1),
        )

        self.maxpool = nn.MaxPool1d(4, 1)

    def forward(self, comb_encode, fls, win_size=32, win_step=1):
        feat = torch.cat((comb_encode, fls), dim=1)
        # v
        # feat = torch.cat((comb_encode[0:-1], fls[1:] - fls[0:-1]), dim=1)

        # max pooling
        feat = feat.transpose(0, 1).unsqueeze(0)
        feat = self.maxpool(feat)
        feat = feat[0].transpose(0, 1)

        win_size = feat.shape[0] - 1 if feat.shape[0] <= win_size else win_size
        D_input = [feat[i:i+win_size:win_step] for i in range(0, feat.shape[0]-win_size)]
        D_input = torch.stack(D_input, dim=0)
        D_output, _ = self.fl_DT(D_input)
        D_output = D_output[:, -1, :]
        d = self.projection(D_output)
        # d = torch.sigmoid(d)
        return d