File size: 16,913 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
"""
 # Copyright 2020 Adobe
 # All Rights Reserved.
 
 # NOTICE: Adobe permits you to use, modify, and distribute this file in
 # accordance with the terms of the Adobe license agreement accompanying
 # it.
 
"""

import numpy as np
import os
import ffmpeg
import cv2
import face_alignment
from src.dataset.utils import icp


class Point:
    def __init__(self, x, y):
        self.x = x
        self.y = y


class ShapeParts:
    def __init__(self, np_pts):
        self.data = np_pts

    def part(self, idx):
        return Point(self.data[idx, 0], self.data[idx, 1])


class Av2Flau_Convertor():
    """

    Any video to facial landmark and audio numpy data converter.

    """

    def __init__(self, video_dir, out_dir, idx=0):

        self.video_dir = video_dir
        if ('\\' in video_dir):
            self.video_name = video_dir.split('\\')[-1]
        else:
            self.video_name = video_dir.split('/')[-1]
        self.out_dir = out_dir
        self.idx = idx
        self.input_format = self.video_dir[-4:]

        # landmark predictor = FANet
        self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device='cuda', flip_input=True)

        # landmark register
        self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45)

    def convert(self, max_num_frames=250, save_audio=False, show=False, register=False):

        # Step 1: preclean video: check stream==2, convert fps/sample_rate,
        ret, wfn = self.__preclean_video__()
        if (not ret):
            return

        # Step 2: detect facial landmark
        wfn = self.video_dir.replace(self.input_format, '_preclean.mp4')
        ret, fl2d, fl3d = self.__video_facial_landmark_detection__(video_dir=wfn, display=False, max_num_frames=max_num_frames)
        if (not ret):
            return
        if (len(fl3d) < 9):
            print('The length of the landmark is too short, skip')
            return

        # Step 3: raw save landmark / audio
        fl3d = np.array(fl3d)
        np.savetxt(os.path.join(self.out_dir, 'raw_fl3d/fan_{:05d}_{}_3d.txt'.format(self.idx, self.video_name[:-4])),
                   fl3d, fmt='%.2f')
        if (save_audio):
            self.__save_audio__(video_dir=self.video_dir.replace(self.input_format, '_preclean.mp4'), fl3d=fl3d)

        # Step 3.5: merge a/v together (optional)
        if (show):
            sf, ef = (fl3d[0][0], fl3d[-1][0]) if fl3d.shape[0] > 0 else (0, 0)
            print(sf, ef)
            print(self.video_dir.replace(self.input_format, '_fl_detect.mp4'),
                  os.path.join(self.out_dir, 'tmp_v', '{:05d}_{}_fl_av.mp4'.format(
                      self.idx, self.video_name[:-4]))
                  )
            self.__ffmpeg_merge_av__(
                video_dir=self.video_dir.replace(self.input_format, '_fl_detect.mp4'),
                audio_dir=self.video_dir.replace(self.input_format, '_preclean.mp4'),
                WriteFileName=os.path.join(self.out_dir, 'tmp_v', '{:05d}_{}_fl_av.mp4'.format(
                    self.idx, self.video_name[:-4])),
                start_end_frame=(int(sf), int(ef)))

        # Step 4: remove tmp files
        os.remove(self.video_dir.replace(self.input_format, '_preclean.mp4'))
        if(os.path.isfile(self.video_dir.replace(self.input_format, '_fl_detect.mp4'))):
            os.remove(self.video_dir.replace(self.input_format, '_fl_detect.mp4'))

        # Step 5: register fl3d
        if (register):
            self.__single_landmark_3d_register__(fl3d)
            # TODO: visualize register fl3d

    ''' ========================================================================

                            STEP 1: Preclean video

    ======================================================================== '''

    def __preclean_video__(self, WriteFileName='_preclean.mp4', fps=25, sample_rate=16000):
        '''
        Pre-clean downloaded videos. Return false if more than 2 streams found.
        Then convert it to fps=25, sample_rate=16kHz
        '''
        input_video_dir = self.video_dir if '_x_' not in self.video_dir else self.video_dir.replace('_x_', '/')

        probe = ffmpeg.probe(input_video_dir)
        # print(probe['streams'])
        # print(len(probe['streams']))
        # if(len(probe['streams']) != 2):
        #     print('Error: not valid for # of a/v channel == 2.')
        #     return False, None
        # exit(0)
        # probe['streams'] = probe['streams'][0::2]

        codec = {'video': '', 'audio': ''}
        for i, stream in enumerate(probe['streams'][0:2]):
            codec[stream['codec_type']] = stream['codec_name']

        # create preclean video
        (
            ffmpeg
                .input(input_video_dir)
                .output(self.video_dir.replace(self.input_format, WriteFileName),
                        # vcodec=codec['video'],
                        # acodec=codec['audio'],
                        r=fps, ar=sample_rate)
                .overwrite_output().global_args('-loglevel', 'quiet')
                .run()
        )

        return True, self.video_dir.replace(self.input_format, WriteFileName)

    ''' ========================================================================

                       STEP 2: Detect facial landmark

    ======================================================================== '''

    def __video_facial_landmark_detection__(self, video_dir=None, display=False, WriteFileName='_fl_detect.mp4',
                                            max_num_frames=250, write=False):
        '''
        Get facial landmark from video.
        '''

        # load video
        print('video_dir : ' + video_dir)
        video = cv2.VideoCapture(video_dir)

        # return false if cannot open
        if (video.isOpened() == False):
            print('Unable to open video file')
            return False, None

        # display info
        length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = video.get(cv2.CAP_PROP_FPS)
        w = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
        h = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
        print('Process Video {}, len: {}, FPS: {:.2f}, W X H: {} x {}'.format(video_dir, length, fps, w, h))

        if(write):
            writer = cv2.VideoWriter(self.video_dir.replace(self.input_format, WriteFileName),
                                 cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (w, h))

        video_facial_landmark = []  # face-landmark np array per frame =: idx + [x,y] * 68
        video_facial_landmark_3d = []  # face-landmark np array per frame =: idx + [x,y,z] * 68
        frame_id = 0
        not_detected_frames = 0

        while (video.isOpened()):
            ret, frame = video.read()
            # reach EOF
            if (ret == False):
                break

            # too many not-detected frames (in middle of video)
            if (not_detected_frames > 5):
                if (len(video_facial_landmark) < 10):
                    # at beginning of the video
                    video_facial_landmark = []
                    video_facial_landmark_3d = []
                else:
                    break

            # dlib facial landmark detect
            img_ret, shape, shape_3d = self.__image_facial_landmark_detection__(img=frame)

            # successfully detected
            if (img_ret):
                # print('\t ==> frame {}/{}'.format(frame_id, length))

                # current frame xy coordinates
                xys = []
                for part_i in range(68):
                    xys.append(shape.part(part_i).x)
                    xys.append(shape.part(part_i).y)

                # check any not_detected_frames, and interp them
                if (not_detected_frames > 0 and len(video_facial_landmark) > 0):
                    # interpolate
                    def interp(last, cur, num, dims=68 * 2 + 1):
                        interp_xys_np = np.zeros((num, dims))
                        for dim in range(dims):
                            interp_xys_np[:, dim] = np.interp(np.arange(0, num), [-1, num], [last[dim], cur[dim]])
                        interp_xys_np = np.round(interp_xys_np).astype('int')
                        interp_xys = [list(xy) for xy in interp_xys_np]
                        return interp_xys

                    interp_xys = interp(video_facial_landmark[-1], [frame_id] + xys, not_detected_frames)
                    video_facial_landmark += interp_xys

                not_detected_frames = 0

                # save landmark/frame_index
                video_facial_landmark.append([frame_id] + xys)
                if (shape_3d.any()):
                    video_facial_landmark_3d.append([frame_id] + list(np.reshape(shape_3d, -1)))

                if(write):
                    frame = self.__vis_landmark_on_img__(frame, shape)

            else:
                print('\t ==> frame {}/{} Not detected'.format(frame_id, length))
                not_detected_frames += 1

            if (display):
                cv2.imshow('Frame', frame)
                if (cv2.waitKey(10) == ord('q')):
                    break

            if(write):
                writer.write(frame)
            frame_id += 1

            if(frame_id > max_num_frames):
                break

        video.release()
        if(write):
            writer.release()
        cv2.destroyAllWindows()

        print('\t ==> Final processed frames {}/{}'.format(frame_id, length))

        return True, video_facial_landmark, video_facial_landmark_3d

    def __image_facial_landmark_detection__(self, img=None):
        '''
        Get facial landmark from single image by FANet
        '''

        shapes = self.predictor.get_landmarks(img)
        if (not shapes):
            return False, None, None

        max_size_idx = 0
        shape = ShapeParts(shapes[max_size_idx][:, 0:2])
        shape_3d = shapes[max_size_idx]

        # when use 2d estimator
        shape_3d = np.concatenate([shape_3d, np.ones(shape=(68, 1))], axis=1)

        return True, shape, shape_3d

    def __vis_landmark_on_img__(self, img, shape, linewidth=2):
        '''
        Visualize landmark on images.
        '''
        if (type(shape) == ShapeParts):
            def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
                for i in idx_list:
                    cv2.line(img, (shape.part(i).x, shape.part(i).y), (shape.part(i + 1).x, shape.part(i + 1).y),
                             color, lineWidth)
                if (loop):
                    cv2.line(img, (shape.part(idx_list[0]).x, shape.part(idx_list[0]).y),
                             (shape.part(idx_list[-1] + 1).x, shape.part(idx_list[-1] + 1).y), color, lineWidth)

            draw_curve(list(range(0, 16)))  # jaw
            draw_curve(list(range(17, 21)))  # eye brow
            draw_curve(list(range(22, 26)))
            draw_curve(list(range(27, 35)))  # nose
            draw_curve(list(range(36, 41)), loop=True)  # eyes
            draw_curve(list(range(42, 47)), loop=True)
            draw_curve(list(range(48, 59)), loop=True)  # mouth
            draw_curve(list(range(60, 67)), loop=True)

        else:
            def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
                for i in idx_list:
                    cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth)
                if (loop):
                    cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]),
                             (shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth)

            draw_curve(list(range(0, 16)))  # jaw
            draw_curve(list(range(17, 21)))  # eye brow
            draw_curve(list(range(22, 26)))
            draw_curve(list(range(27, 35)))  # nose
            draw_curve(list(range(36, 41)), loop=True)  # eyes
            draw_curve(list(range(42, 47)), loop=True)
            draw_curve(list(range(48, 59)), loop=True)  # mouth
            draw_curve(list(range(60, 67)), loop=True)

        return img

    def __ffmpeg_merge_av__(self, video_dir, audio_dir, WriteFileName, start_end_frame):
        probe = ffmpeg.probe(video_dir)
        fps = probe['streams'][0]['avg_frame_rate']
        spf = float(fps.split('/')[1]) / float(fps.split('/')[0])
        sf, ef = start_end_frame
        st, tt = sf * spf, ef * spf - sf * spf

        vin = ffmpeg.input(video_dir).video
        # ain = ffmpeg.input(audio_dir).audio
        # out = ffmpeg.output(vin, ain, WriteFileName, codec='copy', ss=st, t=tt, shortest=None)
        out = ffmpeg.output(vin, WriteFileName, codec='copy', ss=st, t=tt, shortest=None)
        out = out.overwrite_output().global_args('-loglevel', 'quiet')
        out.run()

        # os.system('ffmpeg -i {} -codec copy -ss {} -t {} {}'.format(video_dir, st, tt, WriteFileName))

    def __save_audio__(self, video_dir, fl3d):
        """
        Extract audio from preclean video. Used for creating audio-aware dataset.

        """
        sf, ef = fl3d[0][0], fl3d[-1][0]

        probe = ffmpeg.probe(video_dir)
        fps = probe['streams'][0]['avg_frame_rate']
        spf = float(fps.split('/')[1]) / float(fps.split('/')[0])
        st, tt = sf * spf, ef * spf - sf * spf

        audio_dir = os.path.join(self.out_dir, 'raw_wav', '{:05d}_{}_audio.wav'.format(self.idx, self.video_name[:-4]))
        (
            ffmpeg
                .input(video_dir)
                .output(audio_dir, ss=st, t=tt)
                .overwrite_output().global_args('-loglevel', 'quiet')
                .run()
        )

    ''' ========================================================================

                            STEP 5: Landmark register

    ======================================================================== '''

    def __single_landmark_3d_register__(self, fl3d, display=False):
        """
        Register a single 3d landmark file

        """
        # Step 1 : Load and Smooth
        from scipy.signal import savgol_filter
        lines = savgol_filter(fl3d, 7, 3, axis=0)

        all_landmarks = lines[:, 1:].reshape((-1, 68, 3))  # remove frame idx
        w, h = int(np.max(all_landmarks[:, :, 0])) + 20, int(np.max(all_landmarks[:, :, 1])) + 20

        # Step 2 : setup anchor face
        print('Using exisiting ' + 'dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(self.t_shape_idx)))
        anchor_t_shape = np.loadtxt('dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(self.t_shape_idx)))

        registered_landmarks_to_save = []
        registered_affine_mat_to_save = []
        # for each line
        for line in lines:
            frame_id = line[0]
            landmarks = line[1:].reshape(68, 3)

            # Step 3 : ICP on (frame, anchor)
            frame_t_shape = landmarks[self.t_shape_idx, :]

            T, distance, itr = icp(frame_t_shape, anchor_t_shape)

            # Step 4 : Affine transform
            landmarks = np.hstack((landmarks, np.ones((68, 1))))
            registered_landmarks = np.dot(T, landmarks.T).T
            err = np.mean(np.sqrt(np.sum((registered_landmarks[self.t_shape_idx, 0:3] - anchor_t_shape) ** 2, axis=1)))
            # print(err, distance, itr)

            # Step 5 : Save is requested
            registered_landmarks_to_save.append([frame_id] + list(registered_landmarks[:, 0:3].reshape(-1)))
            registered_affine_mat_to_save.append([frame_id] + list(T.reshape(-1)))

            # Step 5.5 (optional) : visualize ori / registered faces (Isolated in Black BG)
            if (display):
                img = np.zeros((h, w * 2, 3), np.uint8)
                self.__vis_landmark_on_img__(img, landmarks.astype(np.int))
                registered_landmarks[:, 0] += w
                self.__vis_landmark_on_img__(img, registered_landmarks.astype(np.int))
                cv2.imshow('img', img)
                if (cv2.waitKey(30) == ord('q')):
                    break

        np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_fl_sm.txt'
                                .format(self.idx, self.video_name[:-4])),
                   lines, fmt='%.6f')
        np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_fl_reg.txt'
                                .format(self.idx, self.video_name[:-4])),
                   np.array(registered_landmarks_to_save), fmt='%.6f')
        np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_mat_reg.txt'
                                .format(self.idx, self.video_name[:-4])),
                   np.array(registered_affine_mat_to_save), fmt='%.6f')


if __name__ == '__main__':
    video_dir = r'C:\Users\yangzhou\Videos\004_1.mp4'
    out_dir = r'C:\Users\yangzhou\Videos'
    c = Av2Flau_Convertor(video_dir, out_dir, idx=0)
    c.convert()