Spaces:
Sleeping
Sleeping
File size: 16,913 Bytes
22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import numpy as np
import os
import ffmpeg
import cv2
import face_alignment
from src.dataset.utils import icp
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
class ShapeParts:
def __init__(self, np_pts):
self.data = np_pts
def part(self, idx):
return Point(self.data[idx, 0], self.data[idx, 1])
class Av2Flau_Convertor():
"""
Any video to facial landmark and audio numpy data converter.
"""
def __init__(self, video_dir, out_dir, idx=0):
self.video_dir = video_dir
if ('\\' in video_dir):
self.video_name = video_dir.split('\\')[-1]
else:
self.video_name = video_dir.split('/')[-1]
self.out_dir = out_dir
self.idx = idx
self.input_format = self.video_dir[-4:]
# landmark predictor = FANet
self.predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, device='cuda', flip_input=True)
# landmark register
self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45)
def convert(self, max_num_frames=250, save_audio=False, show=False, register=False):
# Step 1: preclean video: check stream==2, convert fps/sample_rate,
ret, wfn = self.__preclean_video__()
if (not ret):
return
# Step 2: detect facial landmark
wfn = self.video_dir.replace(self.input_format, '_preclean.mp4')
ret, fl2d, fl3d = self.__video_facial_landmark_detection__(video_dir=wfn, display=False, max_num_frames=max_num_frames)
if (not ret):
return
if (len(fl3d) < 9):
print('The length of the landmark is too short, skip')
return
# Step 3: raw save landmark / audio
fl3d = np.array(fl3d)
np.savetxt(os.path.join(self.out_dir, 'raw_fl3d/fan_{:05d}_{}_3d.txt'.format(self.idx, self.video_name[:-4])),
fl3d, fmt='%.2f')
if (save_audio):
self.__save_audio__(video_dir=self.video_dir.replace(self.input_format, '_preclean.mp4'), fl3d=fl3d)
# Step 3.5: merge a/v together (optional)
if (show):
sf, ef = (fl3d[0][0], fl3d[-1][0]) if fl3d.shape[0] > 0 else (0, 0)
print(sf, ef)
print(self.video_dir.replace(self.input_format, '_fl_detect.mp4'),
os.path.join(self.out_dir, 'tmp_v', '{:05d}_{}_fl_av.mp4'.format(
self.idx, self.video_name[:-4]))
)
self.__ffmpeg_merge_av__(
video_dir=self.video_dir.replace(self.input_format, '_fl_detect.mp4'),
audio_dir=self.video_dir.replace(self.input_format, '_preclean.mp4'),
WriteFileName=os.path.join(self.out_dir, 'tmp_v', '{:05d}_{}_fl_av.mp4'.format(
self.idx, self.video_name[:-4])),
start_end_frame=(int(sf), int(ef)))
# Step 4: remove tmp files
os.remove(self.video_dir.replace(self.input_format, '_preclean.mp4'))
if(os.path.isfile(self.video_dir.replace(self.input_format, '_fl_detect.mp4'))):
os.remove(self.video_dir.replace(self.input_format, '_fl_detect.mp4'))
# Step 5: register fl3d
if (register):
self.__single_landmark_3d_register__(fl3d)
# TODO: visualize register fl3d
''' ========================================================================
STEP 1: Preclean video
======================================================================== '''
def __preclean_video__(self, WriteFileName='_preclean.mp4', fps=25, sample_rate=16000):
'''
Pre-clean downloaded videos. Return false if more than 2 streams found.
Then convert it to fps=25, sample_rate=16kHz
'''
input_video_dir = self.video_dir if '_x_' not in self.video_dir else self.video_dir.replace('_x_', '/')
probe = ffmpeg.probe(input_video_dir)
# print(probe['streams'])
# print(len(probe['streams']))
# if(len(probe['streams']) != 2):
# print('Error: not valid for # of a/v channel == 2.')
# return False, None
# exit(0)
# probe['streams'] = probe['streams'][0::2]
codec = {'video': '', 'audio': ''}
for i, stream in enumerate(probe['streams'][0:2]):
codec[stream['codec_type']] = stream['codec_name']
# create preclean video
(
ffmpeg
.input(input_video_dir)
.output(self.video_dir.replace(self.input_format, WriteFileName),
# vcodec=codec['video'],
# acodec=codec['audio'],
r=fps, ar=sample_rate)
.overwrite_output().global_args('-loglevel', 'quiet')
.run()
)
return True, self.video_dir.replace(self.input_format, WriteFileName)
''' ========================================================================
STEP 2: Detect facial landmark
======================================================================== '''
def __video_facial_landmark_detection__(self, video_dir=None, display=False, WriteFileName='_fl_detect.mp4',
max_num_frames=250, write=False):
'''
Get facial landmark from video.
'''
# load video
print('video_dir : ' + video_dir)
video = cv2.VideoCapture(video_dir)
# return false if cannot open
if (video.isOpened() == False):
print('Unable to open video file')
return False, None
# display info
length = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
w = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
print('Process Video {}, len: {}, FPS: {:.2f}, W X H: {} x {}'.format(video_dir, length, fps, w, h))
if(write):
writer = cv2.VideoWriter(self.video_dir.replace(self.input_format, WriteFileName),
cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'), fps, (w, h))
video_facial_landmark = [] # face-landmark np array per frame =: idx + [x,y] * 68
video_facial_landmark_3d = [] # face-landmark np array per frame =: idx + [x,y,z] * 68
frame_id = 0
not_detected_frames = 0
while (video.isOpened()):
ret, frame = video.read()
# reach EOF
if (ret == False):
break
# too many not-detected frames (in middle of video)
if (not_detected_frames > 5):
if (len(video_facial_landmark) < 10):
# at beginning of the video
video_facial_landmark = []
video_facial_landmark_3d = []
else:
break
# dlib facial landmark detect
img_ret, shape, shape_3d = self.__image_facial_landmark_detection__(img=frame)
# successfully detected
if (img_ret):
# print('\t ==> frame {}/{}'.format(frame_id, length))
# current frame xy coordinates
xys = []
for part_i in range(68):
xys.append(shape.part(part_i).x)
xys.append(shape.part(part_i).y)
# check any not_detected_frames, and interp them
if (not_detected_frames > 0 and len(video_facial_landmark) > 0):
# interpolate
def interp(last, cur, num, dims=68 * 2 + 1):
interp_xys_np = np.zeros((num, dims))
for dim in range(dims):
interp_xys_np[:, dim] = np.interp(np.arange(0, num), [-1, num], [last[dim], cur[dim]])
interp_xys_np = np.round(interp_xys_np).astype('int')
interp_xys = [list(xy) for xy in interp_xys_np]
return interp_xys
interp_xys = interp(video_facial_landmark[-1], [frame_id] + xys, not_detected_frames)
video_facial_landmark += interp_xys
not_detected_frames = 0
# save landmark/frame_index
video_facial_landmark.append([frame_id] + xys)
if (shape_3d.any()):
video_facial_landmark_3d.append([frame_id] + list(np.reshape(shape_3d, -1)))
if(write):
frame = self.__vis_landmark_on_img__(frame, shape)
else:
print('\t ==> frame {}/{} Not detected'.format(frame_id, length))
not_detected_frames += 1
if (display):
cv2.imshow('Frame', frame)
if (cv2.waitKey(10) == ord('q')):
break
if(write):
writer.write(frame)
frame_id += 1
if(frame_id > max_num_frames):
break
video.release()
if(write):
writer.release()
cv2.destroyAllWindows()
print('\t ==> Final processed frames {}/{}'.format(frame_id, length))
return True, video_facial_landmark, video_facial_landmark_3d
def __image_facial_landmark_detection__(self, img=None):
'''
Get facial landmark from single image by FANet
'''
shapes = self.predictor.get_landmarks(img)
if (not shapes):
return False, None, None
max_size_idx = 0
shape = ShapeParts(shapes[max_size_idx][:, 0:2])
shape_3d = shapes[max_size_idx]
# when use 2d estimator
shape_3d = np.concatenate([shape_3d, np.ones(shape=(68, 1))], axis=1)
return True, shape, shape_3d
def __vis_landmark_on_img__(self, img, shape, linewidth=2):
'''
Visualize landmark on images.
'''
if (type(shape) == ShapeParts):
def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
for i in idx_list:
cv2.line(img, (shape.part(i).x, shape.part(i).y), (shape.part(i + 1).x, shape.part(i + 1).y),
color, lineWidth)
if (loop):
cv2.line(img, (shape.part(idx_list[0]).x, shape.part(idx_list[0]).y),
(shape.part(idx_list[-1] + 1).x, shape.part(idx_list[-1] + 1).y), color, lineWidth)
draw_curve(list(range(0, 16))) # jaw
draw_curve(list(range(17, 21))) # eye brow
draw_curve(list(range(22, 26)))
draw_curve(list(range(27, 35))) # nose
draw_curve(list(range(36, 41)), loop=True) # eyes
draw_curve(list(range(42, 47)), loop=True)
draw_curve(list(range(48, 59)), loop=True) # mouth
draw_curve(list(range(60, 67)), loop=True)
else:
def draw_curve(idx_list, color=(0, 255, 0), loop=False, lineWidth=linewidth):
for i in idx_list:
cv2.line(img, (shape[i, 0], shape[i, 1]), (shape[i + 1, 0], shape[i + 1, 1]), color, lineWidth)
if (loop):
cv2.line(img, (shape[idx_list[0], 0], shape[idx_list[0], 1]),
(shape[idx_list[-1] + 1, 0], shape[idx_list[-1] + 1, 1]), color, lineWidth)
draw_curve(list(range(0, 16))) # jaw
draw_curve(list(range(17, 21))) # eye brow
draw_curve(list(range(22, 26)))
draw_curve(list(range(27, 35))) # nose
draw_curve(list(range(36, 41)), loop=True) # eyes
draw_curve(list(range(42, 47)), loop=True)
draw_curve(list(range(48, 59)), loop=True) # mouth
draw_curve(list(range(60, 67)), loop=True)
return img
def __ffmpeg_merge_av__(self, video_dir, audio_dir, WriteFileName, start_end_frame):
probe = ffmpeg.probe(video_dir)
fps = probe['streams'][0]['avg_frame_rate']
spf = float(fps.split('/')[1]) / float(fps.split('/')[0])
sf, ef = start_end_frame
st, tt = sf * spf, ef * spf - sf * spf
vin = ffmpeg.input(video_dir).video
# ain = ffmpeg.input(audio_dir).audio
# out = ffmpeg.output(vin, ain, WriteFileName, codec='copy', ss=st, t=tt, shortest=None)
out = ffmpeg.output(vin, WriteFileName, codec='copy', ss=st, t=tt, shortest=None)
out = out.overwrite_output().global_args('-loglevel', 'quiet')
out.run()
# os.system('ffmpeg -i {} -codec copy -ss {} -t {} {}'.format(video_dir, st, tt, WriteFileName))
def __save_audio__(self, video_dir, fl3d):
"""
Extract audio from preclean video. Used for creating audio-aware dataset.
"""
sf, ef = fl3d[0][0], fl3d[-1][0]
probe = ffmpeg.probe(video_dir)
fps = probe['streams'][0]['avg_frame_rate']
spf = float(fps.split('/')[1]) / float(fps.split('/')[0])
st, tt = sf * spf, ef * spf - sf * spf
audio_dir = os.path.join(self.out_dir, 'raw_wav', '{:05d}_{}_audio.wav'.format(self.idx, self.video_name[:-4]))
(
ffmpeg
.input(video_dir)
.output(audio_dir, ss=st, t=tt)
.overwrite_output().global_args('-loglevel', 'quiet')
.run()
)
''' ========================================================================
STEP 5: Landmark register
======================================================================== '''
def __single_landmark_3d_register__(self, fl3d, display=False):
"""
Register a single 3d landmark file
"""
# Step 1 : Load and Smooth
from scipy.signal import savgol_filter
lines = savgol_filter(fl3d, 7, 3, axis=0)
all_landmarks = lines[:, 1:].reshape((-1, 68, 3)) # remove frame idx
w, h = int(np.max(all_landmarks[:, :, 0])) + 20, int(np.max(all_landmarks[:, :, 1])) + 20
# Step 2 : setup anchor face
print('Using exisiting ' + 'dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(self.t_shape_idx)))
anchor_t_shape = np.loadtxt('dataset/utils/ANCHOR_T_SHAPE_{}.txt'.format(len(self.t_shape_idx)))
registered_landmarks_to_save = []
registered_affine_mat_to_save = []
# for each line
for line in lines:
frame_id = line[0]
landmarks = line[1:].reshape(68, 3)
# Step 3 : ICP on (frame, anchor)
frame_t_shape = landmarks[self.t_shape_idx, :]
T, distance, itr = icp(frame_t_shape, anchor_t_shape)
# Step 4 : Affine transform
landmarks = np.hstack((landmarks, np.ones((68, 1))))
registered_landmarks = np.dot(T, landmarks.T).T
err = np.mean(np.sqrt(np.sum((registered_landmarks[self.t_shape_idx, 0:3] - anchor_t_shape) ** 2, axis=1)))
# print(err, distance, itr)
# Step 5 : Save is requested
registered_landmarks_to_save.append([frame_id] + list(registered_landmarks[:, 0:3].reshape(-1)))
registered_affine_mat_to_save.append([frame_id] + list(T.reshape(-1)))
# Step 5.5 (optional) : visualize ori / registered faces (Isolated in Black BG)
if (display):
img = np.zeros((h, w * 2, 3), np.uint8)
self.__vis_landmark_on_img__(img, landmarks.astype(np.int))
registered_landmarks[:, 0] += w
self.__vis_landmark_on_img__(img, registered_landmarks.astype(np.int))
cv2.imshow('img', img)
if (cv2.waitKey(30) == ord('q')):
break
np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_fl_sm.txt'
.format(self.idx, self.video_name[:-4])),
lines, fmt='%.6f')
np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_fl_reg.txt'
.format(self.idx, self.video_name[:-4])),
np.array(registered_landmarks_to_save), fmt='%.6f')
np.savetxt(os.path.join(self.out_dir, 'register_fl3d', '{:05d}_{}_mat_reg.txt'
.format(self.idx, self.video_name[:-4])),
np.array(registered_affine_mat_to_save), fmt='%.6f')
if __name__ == '__main__':
video_dir = r'C:\Users\yangzhou\Videos\004_1.mp4'
out_dir = r'C:\Users\yangzhou\Videos'
c = Av2Flau_Convertor(video_dir, out_dir, idx=0)
c.convert()
|