Spaces:
Sleeping
Sleeping
File size: 8,381 Bytes
22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import os
import numpy as np
import librosa
import pysptk
from scipy import signal
import pyworld as pw
import copy
def _get_padding_conv2d(input_size, output_size, kernel_size, stride, dilation=[1,1]):
Pr = (output_size[0]-1)*stride[0]+(kernel_size[0]-1)*dilation[0]+1-input_size[0]
Pc = (output_size[1]-1)*stride[1]+(kernel_size[1]-1)*dilation[1]+1-input_size[1]
padding_h = (Pr/2, Pr-Pr/2)
padding_w = (Pc/2, Pc-Pc/2)
print(padding_h, padding_w)
def _get_padding_deconv2d(input_size, output_size, kernel_size, stride):
padding_h = (input_size[0]-1)*stride[0]+kernel_size[0]-output_size[0]
padding_w = (input_size[1]-1)*stride[1]+kernel_size[1]-output_size[1]
print(padding_h/2, padding_w/2)
def _conv2d_simulator(input_dim, kernel_size, stride, padding, dilation=[1,1]):
h_out = (input_dim[0]+2*padding[0]-dilation[0]*(kernel_size[0]-1)-1)/stride[0] + 1
w_out = (input_dim[1]+2*padding[1]-dilation[1]*(kernel_size[1]-1)-1)/stride[1] + 1
print('Floor of:', h_out, w_out)
def _deconv2d_simulator(input_dim, kernel_size, stride, padding, dilation=[1,1]):
h_out = (input_dim[0]-1)*stride[0]-2*padding[0]+kernel_size[0]
w_out = (input_dim[1]-1)*stride[1]-2*padding[1]+kernel_size[1]
print(h_out, w_out)
def sptk_left_signal_padding(x, count):
x = np.pad(x, (count,0), 'constant', constant_values=(0, 0))
return x
def sptk_frame_zero_padding(x, winsz):
x = np.pad(x, ((0,0),(winsz//2,winsz//2)), 'constant', constant_values=(0, 0))
return x
def sptk_signal_padding(x, count):
x = np.pad(x, (count,count), 'constant', constant_values=(0, 0))
return x
def sptk_window(x, framesz, hopsz, winsz=None, windowing=None, normalize=False):
x = librosa.util.frame(sptk_signal_padding(x, framesz//2), frame_length=framesz, hop_length=hopsz)
if windowing is not None:
win = pysptk.blackman(framesz)
x = x.T * win
else:
x = x.T
if winsz is not None and winsz != framesz:
x = sptk_frame_zero_padding(x, winsz-framesz)
if normalize:
x = x / np.sqrt(np.expand_dims(sum(x**2, 1), 1) + 1e-16)
return x
def hz2alpha(hz):
alpha = 0.313 * np.log10(hz) + (-0.903)
alpha = np.round(alpha*100) / 100.0
return alpha
def sptk_mcep(x, order, winsz, hopsz, fftsz, fs, window_norm=False, noise_floor=1e-8):
alpha = hz2alpha(fs)
windowed = sptk_window(x, winsz, hopsz, fftsz, windowing='blackman', normalize=window_norm)
cep = pysptk.mcep(windowed, order=order, alpha=alpha, miniter=2, maxiter=30,
threshold=0.001, etype=1, eps=noise_floor, min_det=1.0e-6, itype=0)
return cep, alpha
def my_world(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550):
frame_period = hopsz / float(fs) * 1000
_f0, t = pw.harvest(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi)
f0 = pw.stonemask(x, _f0, t, fs)
sp = pw.cheaptrick(x, f0, t, fs, fft_size=fft_size, f0_floor=lo)
ap = pw.d4c(x, f0, t, fs, fft_size=fft_size)
assert x.shape[0] >= (sp.shape[0]-1) * hopsz
sig = x[:(sp.shape[0]-1) * hopsz]
assert sig.shape[0] % hopsz == 0
return f0[:-1], sp[:-1,:], ap[:-1,:], sig
def global_normalization(x, lo, hi):
# normalize logf0 to [0,1]
x = x.astype(float).copy()
uv = x==0
x[~uv] = (x[~uv] - np.log(lo)) / (np.log(hi)-np.log(lo))
x = np.clip(x, 0, 1)
return x
def speaker_normalization(f0, index_nonzero, mean_f0, std_f0):
# f0 is logf0
f0 = f0.astype(float).copy()
#index_nonzero = f0 != 0
f0[index_nonzero] = (f0[index_nonzero] - mean_f0) / std_f0 / 4.0
f0[index_nonzero] = np.clip(f0[index_nonzero], -1, 1)
f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0
return f0
def speaker_normalization_tweak(f0, mean_f0, std_f0, mean_f0_trg, std_f0_trg):
# f0 is logf0
f0 = f0.astype(float).copy()
index_nonzero = f0 != 0
delta = (mean_f0_trg - mean_f0) * 0.1
f0[index_nonzero] = (f0[index_nonzero] - mean_f0 + delta) / std_f0 / 4.0
f0 = np.clip(f0, -1, 1)
f0[index_nonzero] = (f0[index_nonzero] + 1) / 2.0
return f0
def quantize_f0(x, num_bins=256):
# x is logf0
assert x.ndim==1
x = x.astype(float).copy()
assert (x >= 0).all() and (x <= 1).all()
uv = x==0
x = np.round(x * (num_bins-1))
x = x + 1
x[uv] = 0
enc = np.zeros((len(x), num_bins+1), dtype=np.float32)
enc[np.arange(len(x)), x.astype(np.int32)] = 1.0
return enc
def quantize_f0_interp(x, num_bins=256):
# x is logf0
assert x.ndim==1
x = x.astype(float).copy()
uv = (x<0)
x[uv] = 0.0
assert (x >= 0).all() and (x <= 1).all()
x = np.round(x * (num_bins-1))
x = x + 1
x[uv] = 0.0
enc = np.zeros((len(x), num_bins+1), dtype=np.float32)
enc[np.arange(len(x)), x.astype(np.int32)] = 1.0
return enc
def quantize_chroma(x, lo=50, hi=400, num_bins=120):
# x is f0 in Hz
assert x.ndim==1
x = x.astype(float).copy()
uv = x==0
x[~uv] = np.clip(x[~uv], lo/2, hi*2)
# convert to chroma f0
x[~uv] = (np.log2(x[~uv] / 440) * 12 + 57) % 12
# xs ~ [0,12)
x = np.floor(x / 12 * num_bins)
x = x + 1
x[uv] = 0
enc = np.zeros((len(x), num_bins+1), dtype=np.float32)
enc[np.arange(len(x)), x.astype(np.int32)] += 1.0
return enc
def quantize_f0s(xs, lo=50, hi=400, num_bins=256):
# xs is logf0
xs = copy.copy(xs)
uv = xs==0
xs[~uv] = (xs[~uv] - np.log(lo)) / (np.log(hi)-np.log(lo))
xs = np.clip(xs, 0, 1)
# xs ~ [0,1]
xs = np.round(xs * (num_bins-1))
xs = xs + 1
xs[uv] = 0
enc = np.zeros((xs.shape[1], num_bins+1), dtype=np.float32)
for i in range(xs.shape[0]):
enc[np.arange(xs.shape[1]), xs[i].astype(np.int32)] += 1.0
enc /= enc.sum(axis=1, keepdims=True)
return enc
def butter_highpass(cutoff, fs, order=5):
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='high', analog=False)
return b, a
def write_metadata(metadata, out_dir, sr=16000):
with open(os.path.join(out_dir, 'train.txt'), 'w', encoding='utf-8') as f:
for m in metadata:
f.write('|'.join([str(x) for x in m]) + '\n')
frames = sum([m[2] for m in metadata])
hours = frames / sr / 3600
print('Wrote %d utterances, %d time steps (%.2f hours)' % (len(metadata), frames, hours))
def world_dio(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550, thr=0.1):
frame_period = hopsz / float(fs) * 1000
_f0, t = pw.dio(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi, allowed_range=thr)
f0 = pw.stonemask(x, _f0, t, fs)
f0[f0!=0] = np.log(f0[f0!=0])
return f0
def world_harvest(x, fs, fft_size=1024, hopsz=256, lo=50, hi=550):
frame_period = hopsz / float(fs) * 1000
_f0, t = pw.harvest(x, fs, frame_period=frame_period, f0_floor=lo, f0_ceil=hi)
f0 = pw.stonemask(x, _f0, t, fs)
f0[f0!=0] = np.log(f0[f0!=0])
return f0
import torch
def get_mask_from_lengths(lengths, max_len):
ids = torch.arange(0, max_len, device=lengths.device)
mask = (ids >= lengths.unsqueeze(1)).byte()
return mask
def pad_sequence_cnn(sequences, padding_value=0):
# assuming trailing dimensions and type of all the Tensors
# in sequences are same and fetching those from sequences[0]
max_size = sequences[0].size()
channel_dim = max_size[0]
max_len = max([s.size(-1) for s in sequences])
out_dims = (len(sequences), channel_dim, max_len)
out_tensor = sequences[0].data.new(*out_dims).fill_(padding_value)
for i, tensor in enumerate(sequences):
length = tensor.size(-1)
# use index notation to prevent duplicate references to the tensor
out_tensor[i, :, :length] = tensor
return out_tensor
def interp_vector(vec, t_new):
t = np.arange(vec.shape[0])
out = np.zeros_like(vec)
for j in range(vec.shape[1]):
out[:,j] = np.interp(t_new, t, vec[:,j], left=np.nan, right=np.nan)
assert not np.isnan(out).any()
return out
from scipy.interpolate import interp1d
def interp_vector_scipy(vec, t_new):
t = np.arange(vec.shape[0])
f_interp = interp1d(t, vec, axis=0, bounds_error=True, assume_sorted=True)
out = f_interp(t_new)
return out.astype(np.float32)
|