Spaces:
Sleeping
Sleeping
File size: 17,380 Bytes
22257c4 075b64e 22257c4 075b64e 22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
"""
# Copyright 2020 Adobe
# All Rights Reserved.
# NOTICE: Adobe permits you to use, modify, and distribute this file in
# accordance with the terms of the Adobe license agreement accompanying
# it.
"""
import os
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import time
from src.dataset.audio2landmark.audio2landmark_dataset import Audio2landmark_Dataset
from src.models.model_audio2landmark import Audio2landmark_content
from util.utils import Record
from util.icp import icp
import numpy as np
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class Audio2landmark_model():
def __init__(self, opt_parser, jpg_shape=None):
'''
Init model with opt_parser
'''
print('Run on device:', device)
# Step 1 : load opt_parser
self.opt_parser = opt_parser
self.std_face_id = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt')
if(jpg_shape is not None):
self.std_face_id = jpg_shape
self.std_face_id = self.std_face_id.reshape(1, 204)
self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device)
self.train_data = Audio2landmark_Dataset(dump_dir=opt_parser.dump_dir,
dump_name='autovc_retrain_mel',
status='train',
num_window_frames=opt_parser.num_window_frames,
num_window_step=opt_parser.num_window_step)
self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size,
shuffle=False, num_workers=0,
collate_fn=self.train_data.my_collate_in_segments_noemb)
print('TRAIN num videos: {}'.format(len(self.train_data)))
self.eval_data = Audio2landmark_Dataset(dump_dir=opt_parser.dump_dir,
dump_name='autovc_retrain_mel',
status='test',
num_window_frames=opt_parser.num_window_frames,
num_window_step=opt_parser.num_window_step)
self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size,
shuffle=False, num_workers=0,
collate_fn=self.eval_data.my_collate_in_segments_noemb)
print('EVAL num videos: {}'.format(len(self.eval_data)))
# Step 3: Load model
self.C = Audio2landmark_content(num_window_frames=opt_parser.num_window_frames, hidden_size=opt_parser.hidden_size,
in_size=opt_parser.in_size, use_prior_net=opt_parser.use_prior_net,
bidirectional=False, drop_out=opt_parser.drop_out)
if(opt_parser.load_a2l_C_name.split('/')[-1] != ''):
ckpt = torch.load(opt_parser.load_a2l_C_name)
self.C.load_state_dict(ckpt['model_g_face_id'])
print('======== LOAD PRETRAINED CONTENT BRANCH MODEL {} ========='.format(opt_parser.load_a2l_C_name))
self.C.to(device)
self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45)
self.anchor_t_shape = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt')
self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :]
self.opt_C = optim.Adam(self.C.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr)
self.loss_mse = torch.nn.MSELoss()
def __train_content__(self, fls, aus, face_id, is_training=True):
fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False)
if (face_id.shape[0] == 1):
face_id = face_id.repeat(aus.shape[0], 1)
face_id = face_id.requires_grad_(False)
fl_dis_pred, _ = self.C(aus, face_id)
''' lip region weight '''
w = torch.abs(fls[:, 0, 66 * 3 + 1] - fls[:, 0, 62 * 3 + 1])
w = torch.tensor([1.0]).to(device) / (w * 4.0 + 0.1)
w = w.unsqueeze(1)
lip_region_w = torch.ones((fls.shape[0], 204)).to(device)
lip_region_w[:, 48*3:] = torch.cat([w] * 60, dim=1)
lip_region_w = lip_region_w.detach().clone().requires_grad_(False)
if (self.opt_parser.use_lip_weight):
# loss = torch.mean(torch.mean((fl_dis_pred + face_id - fls[:, 0, :]) ** 2, dim=1) * w)
loss = torch.mean(torch.abs(fl_dis_pred +face_id[0:1].detach() - fls_gt) * lip_region_w)
else:
# loss = self.loss_mse(fl_dis_pred + face_id, fls[:, 0, :])
loss = torch.nn.functional.l1_loss(fl_dis_pred+face_id[0:1].detach(), fls_gt)
if (self.opt_parser.use_motion_loss):
pred_motion = fl_dis_pred[:-1] - fl_dis_pred[1:]
gt_motion = fls_gt[:-1] - fls_gt[1:]
loss += torch.nn.functional.l1_loss(pred_motion, gt_motion)
''' use laplacian smooth loss '''
if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0):
n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \
[28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \
[59] + list(range(48, 59)) + [67] + list(range(60, 67))
n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \
list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \
list(range(49, 60)) + [48] + list(range(61, 68)) + [60]
V = (fl_dis_pred + face_id[0:1].detach()).view(-1, 68, 3)
L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :])
G = fls_gt.view(-1, 68, 3)
L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :])
loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G)
loss += loss_laplacian
if(is_training):
self.opt_C.zero_grad()
loss.backward()
self.opt_C.step()
if(not is_training):
# ''' CALIBRATION '''
np_fl_dis_pred = fl_dis_pred.detach().cpu().numpy()
K = int(np_fl_dis_pred.shape[0] * 0.5)
for calib_i in range(204):
min_k_idx = np.argpartition(np_fl_dis_pred[:, calib_i], K)
m = np.mean(np_fl_dis_pred[min_k_idx[:K], calib_i])
np_fl_dis_pred[:, calib_i] = np_fl_dis_pred[:, calib_i] - m
fl_dis_pred = torch.tensor(np_fl_dis_pred, requires_grad=False).to(device)
return fl_dis_pred, face_id[0:1, :], loss
def __train_pass__(self, epoch, log_loss, is_training=True):
st_epoch = time.time()
# Step 1: init setup
if(is_training):
self.C.train()
data = self.train_data
dataloader = self.train_dataloader
status = 'TRAIN'
else:
self.C.eval()
data = self.eval_data
dataloader = self.eval_dataloader
status = 'EVAL'
random_clip_index = np.random.permutation(len(dataloader))[0:self.opt_parser.random_clip_num]
print('random visualize clip index', random_clip_index)
# Step 2: train for each batch
for i, batch in enumerate(dataloader):
global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4]
inputs_fl, inputs_au = batch
inputs_fl_ori, inputs_au_ori = inputs_fl.to(device), inputs_au.to(device)
std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []
seg_bs = 512
''' pick a most closed lip frame from entire clip data '''
close_fl_list = inputs_fl_ori[::10, 0, :]
idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy())
input_face_id = close_fl_list[idx:idx + 1, :]
''' register face '''
if (self.opt_parser.use_reg_as_std):
landmarks = input_face_id.detach().cuda.numpy().reshape(68, 3)
frame_t_shape = landmarks[self.t_shape_idx, :]
T, distance, itr = icp(frame_t_shape, self.anchor_t_shape)
landmarks = np.hstack((landmarks, np.ones((68, 1))))
registered_landmarks = np.dot(T, landmarks.T).T
input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False,
dtype=torch.float).to(device)
for in_batch in range(self.opt_parser.in_batch_nepoch):
std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []
if (is_training):
rand_start = np.random.randint(0, inputs_fl_ori.shape[0] // 5, 1).reshape(-1)
inputs_fl = inputs_fl_ori[rand_start[0]:]
inputs_au = inputs_au_ori[rand_start[0]:]
else:
inputs_fl = inputs_fl_ori
inputs_au = inputs_au_ori
for j in range(0, inputs_fl.shape[0], seg_bs):
# Step 3.1: load segments
inputs_fl_segments = inputs_fl[j: j + seg_bs]
inputs_au_segments = inputs_au[j: j + seg_bs]
fl_std = inputs_fl_segments[:, 0, :].data.cpu().numpy()
if(inputs_fl_segments.shape[0] < 10):
continue
fl_dis_pred_pos, input_face_id, loss = \
self.__train_content__(inputs_fl_segments, inputs_au_segments, input_face_id, is_training)
fl_dis_pred_pos = (fl_dis_pred_pos + input_face_id).data.cpu().numpy()
''' solve inverse lip '''
fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos)
fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))]
std_fls_list += [fl_std.reshape((-1, 204))]
for key in log_loss.keys():
if (key not in locals().keys()):
continue
if (type(locals()[key]) == float):
log_loss[key].add(locals()[key])
else:
log_loss[key].add(locals()[key].data.cpu().numpy())
if (epoch % self.opt_parser.jpg_freq == 0 and (i in random_clip_index or in_batch % self.opt_parser.jpg_freq == 1)):
def save_fls_av(fake_fls_list, postfix='', ifsmooth=True):
fake_fls_np = np.concatenate(fake_fls_list)
filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix)
np.savetxt(
os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename),
fake_fls_np, fmt='%.6f')
audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name)
from util.vis import Vis_old
Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename,
fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, in_batch, postfix),
postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth)
if (self.opt_parser.show_animation and not is_training):
print('show animation ....')
save_fls_av(fls_pred_pos_list, 'pred_{}'.format(i), ifsmooth=True)
save_fls_av(std_fls_list, 'std_{}'.format(i), ifsmooth=False)
from util.vis import Vis_comp
Vis_comp(run_name=self.opt_parser.name,
pred1='fake_fls_{}_{}_{}.txt'.format(epoch, video_name, 'pred_{}'.format(i)),
pred2='fake_fls_{}_{}_{}.txt'.format(epoch, video_name, 'std_{}'.format(i)),
audio_filename='{:05d}_{}_audio.wav'.format(global_id, video_name),
fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, in_batch, 'comp_{}'.format(i)),
postfix='comp_{}'.format(i), root_dir=self.opt_parser.root_dir, ifsmooth=False)
self.__save_model__(save_type='last_inbatch', epoch=epoch)
if (self.opt_parser.verbose <= 1):
print('{} Epoch: #{} batch #{}/{} inbatch #{}/{}'.format(
status, epoch, i, len(dataloader),
in_batch, self.opt_parser.in_batch_nepoch), end=': ')
for key in log_loss.keys():
print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ')
print('')
if (self.opt_parser.verbose <= 2):
print('==========================================================')
print('{} Epoch: #{}'.format(status, epoch), end=':')
for key in log_loss.keys():
print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ')
print(
'Epoch time usage: {:.2f} sec\n==========================================================\n'.format(
time.time() - st_epoch))
self.__save_model__(save_type='last_epoch', epoch=epoch)
if (epoch % self.opt_parser.ckpt_epoch_freq == 0):
self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch)
def __close_face_lip__(self, fl):
facelandmark = fl.reshape(-1, 68, 3)
from util.geo_math import area_of_polygon
min_area_lip, idx = 999, 0
for i, fls in enumerate(facelandmark):
area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2])
if (area_of_mouth < min_area_lip):
min_area_lip = area_of_mouth
idx = i
return idx
def test(self):
eval_loss = {key: Record(['epoch', 'batch']) for key in ['loss']}
with torch.no_grad():
self.__train_pass__(0, eval_loss, is_training=False)
def train(self):
train_loss = {key: Record(['epoch', 'batch']) for key in ['loss']}
eval_loss = {key: Record(['epoch', 'batch']) for key in ['loss']}
for epoch in range(self.opt_parser.nepoch):
self.__train_pass__(epoch=epoch, log_loss=train_loss)
with torch.no_grad():
self.__train_pass__(epoch, eval_loss, is_training=False)
def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy):
for j in range(fl_dis_pred_pos_numpy.shape[0]):
init_face = self.std_face_id.detach().cpu().numpy()
from util.geo_math import area_of_signed_polygon
fls = fl_dis_pred_pos_numpy[j].reshape(68, 3)
area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2])
if (area_of_mouth < 0):
fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3])
fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]
fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3])
fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]
fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3])
fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]
p = max([j-1, 0])
fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \
+ fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \
- fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3]
fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \
+ fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \
- fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3]
fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \
+ fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \
- fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3]
return fl_dis_pred_pos_numpy
def __save_model__(self, save_type, epoch):
if (self.opt_parser.write):
torch.save({
'model_g_face_id': self.C.state_dict(),
'epoch': epoch
}, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type)))
|