File size: 17,380 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b64e
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b64e
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
 # Copyright 2020 Adobe
 # All Rights Reserved.
 
 # NOTICE: Adobe permits you to use, modify, and distribute this file in
 # accordance with the terms of the Adobe license agreement accompanying
 # it.
 
"""

import os
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data
import time
from src.dataset.audio2landmark.audio2landmark_dataset import Audio2landmark_Dataset
from src.models.model_audio2landmark import Audio2landmark_content
from util.utils import Record
from util.icp import icp
import numpy as np

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class Audio2landmark_model():

    def __init__(self, opt_parser, jpg_shape=None):
        '''
        Init model with opt_parser
        '''
        print('Run on device:', device)

        # Step 1 : load opt_parser
        self.opt_parser = opt_parser
        self.std_face_id = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt')
        if(jpg_shape is not None):
            self.std_face_id = jpg_shape
        self.std_face_id = self.std_face_id.reshape(1, 204)
        self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device)

        self.train_data = Audio2landmark_Dataset(dump_dir=opt_parser.dump_dir,
                                                dump_name='autovc_retrain_mel',
                                                status='train',
                                               num_window_frames=opt_parser.num_window_frames,
                                               num_window_step=opt_parser.num_window_step)
        self.train_dataloader = torch.utils.data.DataLoader(self.train_data, batch_size=opt_parser.batch_size,
                                                           shuffle=False, num_workers=0,
                                                           collate_fn=self.train_data.my_collate_in_segments_noemb)
        print('TRAIN num videos: {}'.format(len(self.train_data)))

        self.eval_data = Audio2landmark_Dataset(dump_dir=opt_parser.dump_dir,
                                                 dump_name='autovc_retrain_mel',
                                                 status='test',
                                                 num_window_frames=opt_parser.num_window_frames,
                                                 num_window_step=opt_parser.num_window_step)
        self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=opt_parser.batch_size,
                                                            shuffle=False, num_workers=0,
                                                            collate_fn=self.eval_data.my_collate_in_segments_noemb)
        print('EVAL num videos: {}'.format(len(self.eval_data)))

        # Step 3: Load model
        self.C = Audio2landmark_content(num_window_frames=opt_parser.num_window_frames, hidden_size=opt_parser.hidden_size,
                                      in_size=opt_parser.in_size, use_prior_net=opt_parser.use_prior_net,
                                      bidirectional=False, drop_out=opt_parser.drop_out)

        if(opt_parser.load_a2l_C_name.split('/')[-1] != ''):
            ckpt = torch.load(opt_parser.load_a2l_C_name)
            self.C.load_state_dict(ckpt['model_g_face_id'])
            print('======== LOAD PRETRAINED CONTENT BRANCH MODEL {} ========='.format(opt_parser.load_a2l_C_name))
        self.C.to(device)

        self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45)
        self.anchor_t_shape = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt')
        self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :]

        self.opt_C = optim.Adam(self.C.parameters(), lr=opt_parser.lr, weight_decay=opt_parser.reg_lr)

        self.loss_mse = torch.nn.MSELoss()

    def __train_content__(self, fls, aus, face_id, is_training=True):

        fls_gt = fls[:, 0, :].detach().clone().requires_grad_(False)

        if (face_id.shape[0] == 1):
            face_id = face_id.repeat(aus.shape[0], 1)
        face_id = face_id.requires_grad_(False)

        fl_dis_pred, _ = self.C(aus, face_id)

        ''' lip region weight '''
        w = torch.abs(fls[:, 0, 66 * 3 + 1] - fls[:, 0, 62 * 3 + 1])
        w = torch.tensor([1.0]).to(device) / (w * 4.0 + 0.1)
        w = w.unsqueeze(1)
        lip_region_w = torch.ones((fls.shape[0], 204)).to(device)
        lip_region_w[:, 48*3:] = torch.cat([w] * 60, dim=1)
        lip_region_w = lip_region_w.detach().clone().requires_grad_(False)

        if (self.opt_parser.use_lip_weight):
            # loss = torch.mean(torch.mean((fl_dis_pred + face_id - fls[:, 0, :]) ** 2, dim=1) * w)
            loss = torch.mean(torch.abs(fl_dis_pred +face_id[0:1].detach() - fls_gt) * lip_region_w)
        else:
            # loss = self.loss_mse(fl_dis_pred + face_id, fls[:, 0, :])
            loss = torch.nn.functional.l1_loss(fl_dis_pred+face_id[0:1].detach(), fls_gt)

        if (self.opt_parser.use_motion_loss):
            pred_motion = fl_dis_pred[:-1] - fl_dis_pred[1:]
            gt_motion = fls_gt[:-1] - fls_gt[1:]
            loss += torch.nn.functional.l1_loss(pred_motion, gt_motion)

        ''' use laplacian smooth loss '''
        if (self.opt_parser.lambda_laplacian_smooth_loss > 0.0):
            n1 = [1] + list(range(0, 16)) + [18] + list(range(17, 21)) + [23] + list(range(22, 26)) + \
                 [28] + list(range(27, 35)) + [41] + list(range(36, 41)) + [47] + list(range(42, 47)) + \
                 [59] + list(range(48, 59)) + [67] + list(range(60, 67))
            n2 = list(range(1, 17)) + [15] + list(range(18, 22)) + [20] + list(range(23, 27)) + [25] + \
                 list(range(28, 36)) + [34] + list(range(37, 42)) + [36] + list(range(43, 48)) + [42] + \
                 list(range(49, 60)) + [48] + list(range(61, 68)) + [60]
            V = (fl_dis_pred + face_id[0:1].detach()).view(-1, 68, 3)
            L_V = V - 0.5 * (V[:, n1, :] + V[:, n2, :])
            G = fls_gt.view(-1, 68, 3)
            L_G = G - 0.5 * (G[:, n1, :] + G[:, n2, :])
            loss_laplacian = torch.nn.functional.l1_loss(L_V, L_G)
            loss += loss_laplacian

        if(is_training):
            self.opt_C.zero_grad()
            loss.backward()
            self.opt_C.step()

        if(not is_training):
            # ''' CALIBRATION '''
            np_fl_dis_pred = fl_dis_pred.detach().cpu().numpy()
            K = int(np_fl_dis_pred.shape[0] * 0.5)
            for calib_i in range(204):
                min_k_idx = np.argpartition(np_fl_dis_pred[:, calib_i], K)
                m = np.mean(np_fl_dis_pred[min_k_idx[:K], calib_i])
                np_fl_dis_pred[:, calib_i] = np_fl_dis_pred[:, calib_i] - m
            fl_dis_pred = torch.tensor(np_fl_dis_pred, requires_grad=False).to(device)

        return fl_dis_pred, face_id[0:1, :], loss

    def __train_pass__(self, epoch, log_loss, is_training=True):
        st_epoch = time.time()

        # Step 1: init setup
        if(is_training):
            self.C.train()
            data = self.train_data
            dataloader = self.train_dataloader
            status = 'TRAIN'
        else:
            self.C.eval()
            data = self.eval_data
            dataloader = self.eval_dataloader
            status = 'EVAL'

        random_clip_index = np.random.permutation(len(dataloader))[0:self.opt_parser.random_clip_num]
        print('random visualize clip index', random_clip_index)

        # Step 2: train for each batch
        for i, batch in enumerate(dataloader):

            global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4]
            inputs_fl, inputs_au = batch
            inputs_fl_ori, inputs_au_ori = inputs_fl.to(device), inputs_au.to(device)

            std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []
            seg_bs = 512

            ''' pick a most closed lip frame from entire clip data '''
            close_fl_list = inputs_fl_ori[::10, 0, :]
            idx = self.__close_face_lip__(close_fl_list.detach().cpu().numpy())
            input_face_id = close_fl_list[idx:idx + 1, :]

            ''' register face '''
            if (self.opt_parser.use_reg_as_std):
                landmarks = input_face_id.detach().cuda.numpy().reshape(68, 3)
                frame_t_shape = landmarks[self.t_shape_idx, :]
                T, distance, itr = icp(frame_t_shape, self.anchor_t_shape)
                landmarks = np.hstack((landmarks, np.ones((68, 1))))
                registered_landmarks = np.dot(T, landmarks.T).T
                input_face_id = torch.tensor(registered_landmarks[:, 0:3].reshape(1, 204), requires_grad=False,
                                             dtype=torch.float).to(device)

            for in_batch in range(self.opt_parser.in_batch_nepoch):

                std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []

                if (is_training):
                    rand_start = np.random.randint(0, inputs_fl_ori.shape[0] // 5, 1).reshape(-1)
                    inputs_fl = inputs_fl_ori[rand_start[0]:]
                    inputs_au = inputs_au_ori[rand_start[0]:]
                else:
                    inputs_fl = inputs_fl_ori
                    inputs_au = inputs_au_ori

                for j in range(0, inputs_fl.shape[0], seg_bs):

                    # Step 3.1: load segments
                    inputs_fl_segments = inputs_fl[j: j + seg_bs]
                    inputs_au_segments = inputs_au[j: j + seg_bs]
                    fl_std = inputs_fl_segments[:, 0, :].data.cpu().numpy()

                    if(inputs_fl_segments.shape[0] < 10):
                        continue

                    fl_dis_pred_pos, input_face_id, loss = \
                        self.__train_content__(inputs_fl_segments, inputs_au_segments, input_face_id, is_training)

                    fl_dis_pred_pos = (fl_dis_pred_pos + input_face_id).data.cpu().numpy()
                    ''' solve inverse lip '''
                    fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos)

                    fls_pred_pos_list += [fl_dis_pred_pos.reshape((-1, 204))]
                    std_fls_list += [fl_std.reshape((-1, 204))]

                    for key in log_loss.keys():
                        if (key not in locals().keys()):
                            continue
                        if (type(locals()[key]) == float):
                            log_loss[key].add(locals()[key])
                        else:
                            log_loss[key].add(locals()[key].data.cpu().numpy())


                if (epoch % self.opt_parser.jpg_freq == 0 and (i in random_clip_index or in_batch % self.opt_parser.jpg_freq == 1)):
                    def save_fls_av(fake_fls_list, postfix='', ifsmooth=True):
                        fake_fls_np = np.concatenate(fake_fls_list)
                        filename = 'fake_fls_{}_{}_{}.txt'.format(epoch, video_name, postfix)
                        np.savetxt(
                            os.path.join(self.opt_parser.dump_dir, '../nn_result', self.opt_parser.name, filename),
                            fake_fls_np, fmt='%.6f')
                        audio_filename = '{:05d}_{}_audio.wav'.format(global_id, video_name)
                        from util.vis import Vis_old
                        Vis_old(run_name=self.opt_parser.name, pred_fl_filename=filename, audio_filename=audio_filename,
                                fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, in_batch, postfix),
                                postfix=postfix, root_dir=self.opt_parser.root_dir, ifsmooth=ifsmooth)

                    if (self.opt_parser.show_animation and not is_training):
                        print('show animation ....')
                        save_fls_av(fls_pred_pos_list, 'pred_{}'.format(i), ifsmooth=True)
                        save_fls_av(std_fls_list, 'std_{}'.format(i), ifsmooth=False)
                        from util.vis import Vis_comp
                        Vis_comp(run_name=self.opt_parser.name,
                                 pred1='fake_fls_{}_{}_{}.txt'.format(epoch, video_name, 'pred_{}'.format(i)),
                                 pred2='fake_fls_{}_{}_{}.txt'.format(epoch, video_name, 'std_{}'.format(i)),
                                 audio_filename='{:05d}_{}_audio.wav'.format(global_id, video_name),
                                fps=62.5, av_name='e{:04d}_{}_{}'.format(epoch, in_batch, 'comp_{}'.format(i)),
                                postfix='comp_{}'.format(i), root_dir=self.opt_parser.root_dir, ifsmooth=False)

                    self.__save_model__(save_type='last_inbatch', epoch=epoch)

                if (self.opt_parser.verbose <= 1):
                    print('{} Epoch: #{} batch #{}/{} inbatch #{}/{}'.format(
                        status, epoch, i, len(dataloader),
                    in_batch, self.opt_parser.in_batch_nepoch), end=': ')
                    for key in log_loss.keys():
                        print(key, '{:.5f}'.format(log_loss[key].per('batch')), end=', ')
                    print('')

        if (self.opt_parser.verbose <= 2):
            print('==========================================================')
            print('{} Epoch: #{}'.format(status, epoch), end=':')
            for key in log_loss.keys():
                print(key, '{:.4f}'.format(log_loss[key].per('epoch')), end=', ')
            print(
                'Epoch time usage: {:.2f} sec\n==========================================================\n'.format(
                    time.time() - st_epoch))
        self.__save_model__(save_type='last_epoch', epoch=epoch)
        if (epoch % self.opt_parser.ckpt_epoch_freq == 0):
            self.__save_model__(save_type='e_{}'.format(epoch), epoch=epoch)


    def __close_face_lip__(self, fl):
        facelandmark = fl.reshape(-1, 68, 3)
        from util.geo_math import area_of_polygon
        min_area_lip, idx = 999, 0
        for i, fls in enumerate(facelandmark):
            area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2])
            if (area_of_mouth < min_area_lip):
                min_area_lip = area_of_mouth
                idx = i
        return idx

    def test(self):
        eval_loss = {key: Record(['epoch', 'batch']) for key in ['loss']}
        with torch.no_grad():
            self.__train_pass__(0, eval_loss, is_training=False)

    def train(self):
        train_loss = {key: Record(['epoch', 'batch']) for key in ['loss']}
        eval_loss = {key: Record(['epoch', 'batch']) for key in ['loss']}

        for epoch in range(self.opt_parser.nepoch):
            self.__train_pass__(epoch=epoch, log_loss=train_loss)

            with torch.no_grad():
                self.__train_pass__(epoch, eval_loss, is_training=False)


    def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy):
        for j in range(fl_dis_pred_pos_numpy.shape[0]):
            init_face = self.std_face_id.detach().cpu().numpy()
            from util.geo_math import area_of_signed_polygon
            fls = fl_dis_pred_pos_numpy[j].reshape(68, 3)
            area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2])
            if (area_of_mouth < 0):
                fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3])
                fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]
                fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3])
                fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]
                fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3])
                fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]
                p = max([j-1, 0])
                fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3]
                fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3]
                fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3]
        return fl_dis_pred_pos_numpy


    def __save_model__(self, save_type, epoch):
        if (self.opt_parser.write):
            torch.save({
                'model_g_face_id': self.C.state_dict(),
                'epoch': epoch
            }, os.path.join(self.opt_parser.ckpt_dir, 'ckpt_{}.pth'.format(save_type)))