File size: 14,945 Bytes
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b64e
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b64e
22257c4
 
075b64e
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
075b64e
22257c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
"""
 # Copyright 2020 Adobe
 # All Rights Reserved.
 
 # NOTICE: Adobe permits you to use, modify, and distribute this file in
 # accordance with the terms of the Adobe license agreement accompanying
 # it.
 
"""

import os
import torch.nn.parallel
import torch.utils.data
from src.dataset.audio2landmark.audio2landmark_dataset import Audio2landmark_Dataset
from src.models.model_audio2landmark import *
from util.utils import get_n_params
import numpy as np
import pickle

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class Audio2landmark_model():

    def __init__(self, opt_parser, jpg_shape=None):
        '''
        Init model with opt_parser
        '''
        print('Run on device:', device)

        # Step 1 : load opt_parser
        self.opt_parser = opt_parser
        self.std_face_id = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt')
        if(jpg_shape is not None):
            self.std_face_id = jpg_shape
        self.std_face_id = self.std_face_id.reshape(1, 204)
        self.std_face_id = torch.tensor(self.std_face_id, requires_grad=False, dtype=torch.float).to(device)

        self.eval_data = Audio2landmark_Dataset(dump_dir='MakeItTalk/examples/dump',
                                                dump_name='random',
                                                status='val',
                                               num_window_frames=18,
                                               num_window_step=1)
        self.eval_dataloader = torch.utils.data.DataLoader(self.eval_data, batch_size=1,
                                                           shuffle=False, num_workers=0,
                                                           collate_fn=self.eval_data.my_collate_in_segments)
        print('EVAL num videos: {}'.format(len(self.eval_data)))

        # Step 3: Load model
        self.G = Audio2landmark_pos(drop_out=0.5,
                                 spk_emb_enc_size=128,
                                 c_enc_hidden_size=256,
                                 transformer_d_model=32, N=2, heads=2,
                                 z_size=128, audio_dim=256)
        print('G: Running on {}, total num params = {:.2f}M'.format(device, get_n_params(self.G)/1.0e6))

        model_dict = self.G.state_dict()
        ckpt = torch.load(opt_parser.load_a2l_G_name, map_location=torch.device('cuda'))
        pretrained_dict = {k: v for k, v in ckpt['G'].items() if k.split('.')[0] not in ['comb_mlp']}
        model_dict.update(pretrained_dict)
        self.G.load_state_dict(model_dict)

        print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_G_name))
        self.G.to(device)

        ''' baseline model '''
        self.C = Audio2landmark_content(num_window_frames=18,
                                      in_size=80, use_prior_net=True,
                                      bidirectional=False, drop_out=0.5)

        ckpt = torch.load(opt_parser.load_a2l_C_name, map_location=torch.device('cuda'))
        self.C.load_state_dict(ckpt['model_g_face_id'])
        # self.C.load_state_dict(ckpt['C'])
        print('======== LOAD PRETRAINED FACE ID MODEL {} ========='.format(opt_parser.load_a2l_C_name))
        self.C.to(device)

        self.t_shape_idx = (27, 28, 29, 30, 33, 36, 39, 42, 45)
        self.anchor_t_shape = np.loadtxt('MakeItTalk/src/dataset/utils/STD_FACE_LANDMARKS.txt')
        self.anchor_t_shape = self.anchor_t_shape[self.t_shape_idx, :]

        with open(os.path.join('MakeItTalk/examples', 'dump', 'emb.pickle'), 'rb') as fp:
            self.test_embs = pickle.load(fp)

        print('====================================')
        for key in self.test_embs.keys():
            print(key)
        print('====================================')

    def __train_face_and_pos__(self, fls, aus, embs, face_id, smooth_win=31, close_mouth_ratio=.99):

        fls_without_traj = fls[:, 0, :].detach().clone().requires_grad_(False)

        if (face_id.shape[0] == 1):
            face_id = face_id.repeat(aus.shape[0], 1)
        face_id = face_id.requires_grad_(False)
        baseline_face_id = face_id.detach()

        z = torch.tensor(torch.zeros(aus.shape[0], 128), requires_grad=False, dtype=torch.float).to(device)
        fl_dis_pred, _, spk_encode = self.G(aus, embs * 3.0, face_id, fls_without_traj, z, add_z_spk=False)

        # ADD CONTENT
        from scipy.signal import savgol_filter
        smooth_length = int(min(fl_dis_pred.shape[0]-1, smooth_win) // 2 * 2 + 1)
        fl_dis_pred = savgol_filter(fl_dis_pred.cpu().numpy(), smooth_length, 3, axis=0)
    #
        ''' ================ close pose-branch mouth ================== '''
        fl_dis_pred = fl_dis_pred.reshape((-1, 68, 3))
        index1 = list(range(60-1, 55-1, -1))
        index2 = list(range(68-1, 65-1, -1))
        mean_out = 0.5 * fl_dis_pred[:, 49:54] + 0.5 * fl_dis_pred[:, index1]
        fl_dis_pred[:, 49:54] =  mean_out * close_mouth_ratio + fl_dis_pred[:, 49:54] * (1 - close_mouth_ratio)
        fl_dis_pred[:, index1] = mean_out * close_mouth_ratio + fl_dis_pred[:, index1] * (1 - close_mouth_ratio)
        mean_in = 0.5 * (fl_dis_pred[:, 61:64] + fl_dis_pred[:, index2])
        fl_dis_pred[:, 61:64] = mean_in * close_mouth_ratio + fl_dis_pred[:, 61:64] * (1 - close_mouth_ratio)
        fl_dis_pred[:, index2] = mean_in * close_mouth_ratio + fl_dis_pred[:, index2] * (1 - close_mouth_ratio)
        fl_dis_pred = fl_dis_pred.reshape(-1, 204)
        ''' ============================================================= '''

        fl_dis_pred = torch.tensor(fl_dis_pred).to(device) * self.opt_parser.amp_pos

        residual_face_id = baseline_face_id

        # ''' CALIBRATION '''
        baseline_pred_fls, _ = self.C(aus[:, 0:18, :], residual_face_id)
        baseline_pred_fls = self.__calib_baseline_pred_fls__(baseline_pred_fls)
        fl_dis_pred += baseline_pred_fls

        return fl_dis_pred, face_id[0:1, :]

    def __calib_baseline_pred_fls_old_(self, baseline_pred_fls, residual_face_id, aus):
        mean_face_id = torch.mean(baseline_pred_fls.detach(), dim=0, keepdim=True)
        residual_face_id -= mean_face_id.view(1, 204) * 1.
        baseline_pred_fls, _ = self.C(aus, residual_face_id)
        baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x  # mouth x
        baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y  # mouth y
        return baseline_pred_fls

    def __calib_baseline_pred_fls__(self, baseline_pred_fls, ratio=0.5):
        np_fl_dis_pred = baseline_pred_fls.detach().cpu().numpy()
        K = int(np_fl_dis_pred.shape[0] * ratio)
        for calib_i in range(204):
            min_k_idx = np.argpartition(np_fl_dis_pred[:, calib_i], K)
            m = np.mean(np_fl_dis_pred[min_k_idx[:K], calib_i])
            np_fl_dis_pred[:, calib_i] = np_fl_dis_pred[:, calib_i] - m
        baseline_pred_fls = torch.tensor(np_fl_dis_pred, requires_grad=False).to(device)
        baseline_pred_fls[:, 48 * 3::3] *= self.opt_parser.amp_lip_x  # mouth x
        baseline_pred_fls[:, 48 * 3 + 1::3] *= self.opt_parser.amp_lip_y  # mouth y
        return baseline_pred_fls

    def __train_pass__(self, au_emb=None, centerize_face=False, no_y_rotation=False, vis_fls=False):

        # Step 1: init setup
        self.G.eval()
        self.C.eval()
        data = self.eval_data
        dataloader = self.eval_dataloader

        # Step 2: train for each batch
        for i, batch in enumerate(dataloader):

            global_id, video_name = data[i][0][1][0], data[i][0][1][1][:-4]

            # Step 2.1: load batch data from dataloader (in segments)
            inputs_fl, inputs_au, inputs_emb = batch

            keys = self.opt_parser.reuse_train_emb_list
            if(len(keys) == 0):
                keys = ['audio_embed']
            for key in keys: # ['45hn7-LXDX8']: #['sxCbrYjBsGA']:#
                # load saved emb
                if(au_emb is None):
                    emb_val = self.test_embs[key]
                else:
                    emb_val = au_emb[i]

                inputs_emb = np.tile(emb_val, (inputs_emb.shape[0], 1))
                inputs_emb = torch.tensor(inputs_emb, dtype=torch.float, requires_grad=False)
                inputs_fl, inputs_au, inputs_emb = inputs_fl.to(device), inputs_au.to(device), inputs_emb.to(device)

                std_fls_list, fls_pred_face_id_list, fls_pred_pos_list = [], [], []
                seg_bs = 512

                for j in range(0, inputs_fl.shape[0], seg_bs):

                    # Step 3.1: load segments
                    inputs_fl_segments = inputs_fl[j: j + seg_bs]
                    inputs_au_segments = inputs_au[j: j + seg_bs]
                    inputs_emb_segments = inputs_emb[j: j + seg_bs]

                    if(inputs_fl_segments.shape[0] < 10):
                        continue

                    input_face_id = self.std_face_id

                    fl_dis_pred_pos, input_face_id = \
                        self.__train_face_and_pos__(inputs_fl_segments, inputs_au_segments, inputs_emb_segments,
                                                           input_face_id)

                    fl_dis_pred_pos = (fl_dis_pred_pos + input_face_id).data.cpu().numpy()
                    ''' solve inverse lip '''
                    fl_dis_pred_pos = self.__solve_inverse_lip2__(fl_dis_pred_pos)
                    fls_pred_pos_list += [fl_dis_pred_pos]

                fake_fls_np = np.concatenate(fls_pred_pos_list)

                # revise nose top point
                fake_fls_np[:, 27 * 3:28 * 3] = fake_fls_np[:, 28 * 3:29 * 3] * 2 - fake_fls_np[:, 29 * 3:30 * 3]

                # fake_fls_np[:, 48*3+1::3] += 0.1

                # smooth
                from scipy.signal import savgol_filter
                fake_fls_np = savgol_filter(fake_fls_np, 5, 3, axis=0)

                if(centerize_face):
                    std_m = np.mean(self.std_face_id.detach().cpu().numpy().reshape((1, 68, 3)),
                                    axis=1, keepdims=True)
                    fake_fls_np = fake_fls_np.reshape((-1, 68, 3))
                    fake_fls_np = fake_fls_np - np.mean(fake_fls_np, axis=1, keepdims=True) + std_m
                    fake_fls_np = fake_fls_np.reshape((-1, 68 * 3))

                if(no_y_rotation):
                    std = self.std_face_id.detach().cpu().numpy().reshape(68, 3)
                    std_t_shape = std[self.t_shape_idx, :]
                    fake_fls_np = fake_fls_np.reshape((fake_fls_np.shape[0], 68, 3))
                    frame_t_shape = fake_fls_np[:, self.t_shape_idx, :]
                    from util.icp import icp
                    from scipy.spatial.transform import Rotation as R
                    for i in range(frame_t_shape.shape[0]):
                        T, distance, itr = icp(frame_t_shape[i], std_t_shape)
                        landmarks = np.hstack((frame_t_shape[i], np.ones((9, 1))))
                        rot_mat = T[:3, :3]
                        r = R.from_dcm(rot_mat).as_euler('xyz')
                        r = [0., r[1], r[2]]
                        r = R.from_euler('xyz', r).as_dcm()
                        # print(frame_t_shape[i, 0], r)
                        landmarks = np.hstack((fake_fls_np[i] - T[:3, 3:4].T, np.ones((68, 1))))
                        T2 = np.hstack((r, T[:3, 3:4]))
                        fake_fls_np[i] = np.dot(T2, landmarks.T).T
                        # print(frame_t_shape[i, 0])
                    fake_fls_np = fake_fls_np.reshape((-1, 68 * 3))

                filename = 'pred_fls_{}_{}.txt'.format(video_name.split('\\')[-1].split('/')[-1], key)
                np.savetxt(os.path.join(self.opt_parser.output_folder, filename), fake_fls_np, fmt='%.6f')

                # ''' Visualize result in landmarks '''
                if(vis_fls):
                    from util.vis import Vis
                    Vis(fls=fake_fls_np, filename=video_name.split('\\')[-1].split('/')[-1], fps=62.5,
                        audio_filenam=os.path.join('MakeItTalk/examples', video_name.split('\\')[-1].split('/')[-1]+'.wav'))


    def __close_face_lip__(self, fl):
        facelandmark = fl.reshape(-1, 68, 3)
        from util.geo_math import area_of_polygon
        min_area_lip, idx = 999, 0
        for i, fls in enumerate(facelandmark):
            area_of_mouth = area_of_polygon(fls[list(range(60, 68)), 0:2])
            if (area_of_mouth < min_area_lip):
                min_area_lip = area_of_mouth
                idx = i
        return idx

    def test(self, au_emb=None):
        with torch.no_grad():
            self.__train_pass__(au_emb, vis_fls=True)

    def __solve_inverse_lip2__(self, fl_dis_pred_pos_numpy):
        for j in range(fl_dis_pred_pos_numpy.shape[0]):
            init_face = self.std_face_id.detach().cpu().numpy()
            from util.geo_math import area_of_signed_polygon
            fls = fl_dis_pred_pos_numpy[j].reshape(68, 3)
            area_of_mouth = area_of_signed_polygon(fls[list(range(60, 68)), 0:2])
            if (area_of_mouth < 0):
                fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] + fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3])
                fl_dis_pred_pos_numpy[j, 63 * 3:64 * 3] = fl_dis_pred_pos_numpy[j, 65 * 3:66 * 3]
                fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] + fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3])
                fl_dis_pred_pos_numpy[j, 62 * 3:63 * 3] = fl_dis_pred_pos_numpy[j, 66 * 3:67 * 3]
                fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3] = 0.5 *(fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] + fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3])
                fl_dis_pred_pos_numpy[j, 61 * 3:62 * 3] = fl_dis_pred_pos_numpy[j, 67 * 3:68 * 3]
                p = max([j-1, 0])
                fl_dis_pred_pos_numpy[j, 55 * 3+1:59 * 3+1:3] = fl_dis_pred_pos_numpy[j, 64 * 3+1:68 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 55 * 3+1:59 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 64 * 3+1:68 * 3+1:3]
                fl_dis_pred_pos_numpy[j, 59 * 3+1:60 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:61 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 59 * 3+1:60 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 60 * 3+1:61 * 3+1:3]
                fl_dis_pred_pos_numpy[j, 49 * 3+1:54 * 3+1:3] = fl_dis_pred_pos_numpy[j, 60 * 3+1:65 * 3+1:3] \
                                                          + fl_dis_pred_pos_numpy[p, 49 * 3+1:54 * 3+1:3] \
                                                          - fl_dis_pred_pos_numpy[p, 60 * 3+1:65 * 3+1:3]
        return fl_dis_pred_pos_numpy