marksverdhei's picture
Run the simplest test
b21feb2
raw
history blame
5.58 kB
# import os
# import pickle
import streamlit as st
st.text("This is a test")
# import pandas as pd
# import vec2text
# import torch
# from transformers import AutoModel, AutoTokenizer
# from umap import UMAP
# from tqdm import tqdm
# import plotly.express as px
# import numpy as np
# from sklearn.decomposition import PCA
# # from streamlit_plotly_events import plotly_events
# import plotly.graph_objects as go
# import logging
# import utils
# # Activate tqdm with pandas
# tqdm.pandas()
# # Custom file cache decorator
# def file_cache(file_path):
# def decorator(func):
# def wrapper(*args, **kwargs):
# # Check if the file already exists
# if os.path.exists(file_path):
# # Load from cache
# with open(file_path, "rb") as f:
# print(f"Loading cached data from {file_path}")
# return pickle.load(f)
# else:
# # Compute and save to cache
# result = func(*args, **kwargs)
# with open(file_path, "wb") as f:
# pickle.dump(result, f)
# print(f"Saving new cache to {file_path}")
# return result
# return wrapper
# return decorator
# @st.cache_resource
# def vector_compressor_from_config():
# # Return UMAP with 2 components for dimensionality reduction
# # return UMAP(n_components=2)
# return PCA(n_components=2)
# # Caching the dataframe since loading from an external source can be time-consuming
# @st.cache_data
# def load_data():
# return pd.read_csv("https://huggingface.co/datasets/marksverdhei/reddit-syac-urls/resolve/main/train.csv")
# df = load_data()
# # Caching the model and tokenizer to avoid reloading
# # @st.cache_resource
# # def load_model_and_tokenizer():
# # encoder = AutoModel.from_pretrained("sentence-transformers/gtr-t5-base").encoder.to("cuda")
# # tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/gtr-t5-base")
# # return encoder, tokenizer
# # encoder, tokenizer = load_model_and_tokenizer()
# # Caching the vec2text corrector
# # @st.cache_resource
# # def load_corrector():
# # return vec2text.load_pretrained_corrector("gtr-base")
# # corrector = load_corrector()
# # Caching the precomputed embeddings since they are stored locally and large
# @st.cache_data
# def load_embeddings():
# return np.load("syac-title-embeddings.npy")
# embeddings = load_embeddings()
# # Custom cache the UMAP reduction using file_cache decorator
# @st.cache_data
# @file_cache(".cache/reducer_embeddings.pickle")
# def reduce_embeddings(embeddings):
# reducer = vector_compressor_from_config()
# return reducer.fit_transform(embeddings), reducer
# vectors_2d, reducer = reduce_embeddings(embeddings)
# # Add a scatter plot using Plotly
# # fig = px.scatter(
# # x=vectors_2d[:, 0],
# # y=vectors_2d[:, 1],
# # opacity=0.6,
# # hover_data={"Title": df["title"]},
# # labels={'x': 'UMAP Dimension 1', 'y': 'UMAP Dimension 2'},
# # title="UMAP Scatter Plot of Reddit Titles",
# # color_discrete_sequence=["#ff504c"] # Set default blue color for points
# # )
# # # Customize the layout to adapt to browser settings (light/dark mode)
# # fig.update_layout(
# # template=None, # Let Plotly adapt automatically based on user settings
# # plot_bgcolor="rgba(0, 0, 0, 0)",
# # paper_bgcolor="rgba(0, 0, 0, 0)"
# # )
# x, y = 0.0, 0.0
# vec = np.array([x, y]).astype("float32")
# # Add a card container to the right of the content with Streamlit columns
# col1, col2 = st.columns([3, 1]) # Adjusting ratio to allocate space for the card container
# with col1:
# # Main content stays here (scatterplot, form, etc.)
# # selected_points = plotly_events(fig, click_event=True, hover_event=False,
# # )
# selected_points = None
# with st.form(key="form1_main"):
# if selected_points:
# clicked_point = selected_points[0]
# x_coord = x = clicked_point['x']
# y_coord = y = clicked_point['y']
# x = st.number_input("X Coordinate", value=x, format="%.10f")
# y = st.number_input("Y Coordinate", value=y, format="%.10f")
# vec = np.array([x, y]).astype("float32")
# submit_button = st.form_submit_button("Submit")
# if selected_points or submit_button:
# inferred_embedding = reducer.inverse_transform(np.array([[x, y]]) if not isinstance(reducer, UMAP) else np.array([[x, y]]))
# inferred_embedding = inferred_embedding.astype("float32")
# output = vec2text.invert_embeddings(
# embeddings=torch.tensor(inferred_embedding).cuda(),
# corrector=corrector,
# num_steps=20,
# )
# st.text(str(output))
# st.text(str(inferred_embedding))
# else:
# st.text("Click on a point in the scatterplot to see its coordinates.")
# with col2:
# closest_sentence_index = utils.find_exact_match(vectors_2d, vec, decimals=3)
# st.write(f"{vectors_2d.dtype} {vec.dtype}")
# if closest_sentence_index > -1:
# st.write(df["title"].iloc[closest_sentence_index])
# # Card content
# st.markdown("## Card Container")
# st.write("This is an additional card container to the right of the main content.")
# st.write("You can use this space to show additional information, actions, or insights.")
# st.button("Card Button")