Spaces:
Runtime error
Runtime error
File size: 16,797 Bytes
46e6e62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
#!/usr/bin/env python3
import os
import glob
import pandas as pd
import gradio as gr
import time
import pyarrow as pa
import pyarrow.parquet as pq
import json
from pathlib import Path
# Configuration
DATA_DIR = Path("../data/tiktok_profiles")
CACHE_FILE = Path("../data/tiktok_profiles_combined.parquet")
PROCESSED_FILES_LOG = Path("../data/processed_files.json")
COLUMNS = [
"id",
"unique_id",
"follower_count",
"nickname",
"video_count",
"following_count",
"signature",
"email",
"bio_link",
"updated_at",
"tt_seller",
"region",
"language",
"url",
]
def get_processed_files():
"""
Get the list of already processed files from the log.
Returns a set of filenames that have been processed.
"""
if PROCESSED_FILES_LOG.exists():
with open(PROCESSED_FILES_LOG, "r") as f:
return set(json.load(f))
return set()
def update_processed_files(processed_files):
"""
Update the log of processed files.
"""
PROCESSED_FILES_LOG.parent.mkdir(exist_ok=True)
with open(PROCESSED_FILES_LOG, "w") as f:
json.dump(list(processed_files), f)
def load_data(force_reload=False):
"""
Load data from either the cache file or from individual CSV files.
Only processes new files that haven't been processed before.
Returns a pandas DataFrame with all the data.
Args:
force_reload: If True, reprocess all files regardless of whether they've been processed before.
"""
start_time = time.time()
# Get all available CSV files
all_csv_files = {file.name: file for file in DATA_DIR.glob("*.csv")}
# If cache exists and we're not forcing a reload, load from cache
if CACHE_FILE.exists() and not force_reload:
print(f"Loading data from cache file: {CACHE_FILE}")
df = pd.read_parquet(CACHE_FILE)
# Check for new files
processed_files = get_processed_files()
new_files = [
all_csv_files[name] for name in all_csv_files if name not in processed_files
]
if not new_files:
print(
f"No new files to process. Data loaded in {time.time() - start_time:.2f} seconds"
)
return df
print(f"Found {len(new_files)} new files to process")
# Process only the new files
new_dfs = []
for i, file in enumerate(new_files):
print(f"Loading new file {i+1}/{len(new_files)}: {file.name}")
# Read CSV with optimized settings
chunk_df = pd.read_csv(
file,
dtype={
"id": "str",
"unique_id": "str",
"follower_count": "Int64",
"nickname": "str",
"video_count": "Int64",
"following_count": "Int64",
"signature": "str",
"email": "str",
"bio_link": "str",
"updated_at": "str",
"tt_seller": "str",
"region": "str",
"language": "str",
"url": "str",
},
low_memory=False,
)
new_dfs.append(chunk_df)
processed_files.add(file.name)
if new_dfs:
# Combine new data with existing data
print("Combining new data with existing data...")
new_data = pd.concat(new_dfs, ignore_index=True)
df = pd.concat([df, new_data], ignore_index=True)
# Remove duplicates based on unique_id
df = df.drop_duplicates(subset=["unique_id"], keep="last")
# Save updated data to cache file
print(f"Saving updated data to {CACHE_FILE}")
df.to_parquet(CACHE_FILE, index=False)
# Update the processed files log
update_processed_files(processed_files)
print(f"Data loaded and updated in {time.time() - start_time:.2f} seconds")
return df
# If no cache file or force_reload is True, process all files
print(f"Loading data from CSV files in {DATA_DIR}")
# Get all CSV files
csv_files = list(all_csv_files.values())
total_files = len(csv_files)
print(f"Found {total_files} CSV files")
# Load data in chunks
dfs = []
processed_files = set()
for i, file in enumerate(csv_files):
if i % 10 == 0:
print(f"Loading file {i+1}/{total_files}: {file.name}")
# Read CSV with optimized settings
chunk_df = pd.read_csv(
file,
dtype={
"id": "str",
"unique_id": "str",
"follower_count": "Int64",
"nickname": "str",
"video_count": "Int64",
"following_count": "Int64",
"signature": "str",
"email": "str",
"bio_link": "str",
"updated_at": "str",
"tt_seller": "str",
"region": "str",
"language": "str",
"url": "str",
},
low_memory=False,
)
dfs.append(chunk_df)
processed_files.add(file.name)
# Combine all dataframes
print("Combining all dataframes...")
df = pd.concat(dfs, ignore_index=True)
# Remove duplicates based on unique_id
df = df.drop_duplicates(subset=["unique_id"], keep="last")
# Save to cache file
print(f"Saving combined data to {CACHE_FILE}")
CACHE_FILE.parent.mkdir(exist_ok=True)
df.to_parquet(CACHE_FILE, index=False)
# Update the processed files log
update_processed_files(processed_files)
print(f"Data loaded and cached in {time.time() - start_time:.2f} seconds")
return df
def search_by_username(df, username):
"""Search for profiles by username (unique_id)"""
if not username:
return pd.DataFrame()
# Case-insensitive search
results = df[df["unique_id"].str.lower().str.contains(username.lower(), na=False)]
return results.head(100) # Limit results to prevent UI overload
def search_by_nickname(df, nickname):
"""Search for profiles by nickname"""
if not nickname:
return pd.DataFrame()
# Case-insensitive search
results = df[df["nickname"].str.lower().str.contains(nickname.lower(), na=False)]
return results.head(100) # Limit results to prevent UI overload
def search_by_follower_count(df, min_followers, max_followers):
"""Search for profiles by follower count range"""
if min_followers is None:
min_followers = 0
if max_followers is None:
max_followers = df["follower_count"].max()
results = df[
(df["follower_count"] >= min_followers)
& (df["follower_count"] <= max_followers)
]
return results.head(100) # Limit results to prevent UI overload
def format_results(df):
"""Format the results for display"""
if df.empty:
# Return an empty DataFrame with the same columns instead of a string
return pd.DataFrame(columns=df.columns)
# Format the DataFrame for display
display_df = df.copy()
# Convert follower count to human-readable format
def format_number(num):
if pd.isna(num):
return "N/A"
if num >= 1_000_000:
return f"{num/1_000_000:.1f}M"
elif num >= 1_000:
return f"{num/1_000:.1f}K"
return str(num)
display_df["follower_count"] = display_df["follower_count"].apply(format_number)
display_df["video_count"] = display_df["video_count"].apply(format_number)
display_df["following_count"] = display_df["following_count"].apply(format_number)
return display_df
def combined_search(
df,
min_followers,
max_followers,
min_videos,
max_videos,
signature_query,
region,
has_email,
):
"""Combined search function using all criteria"""
results = df.copy()
# Apply each filter if provided
if min_followers is not None:
results = results[results["follower_count"] >= min_followers]
if max_followers is not None:
results = results[results["follower_count"] <= max_followers]
if min_videos is not None:
results = results[results["video_count"] >= min_videos]
if max_videos is not None:
results = results[results["video_count"] <= max_videos]
if signature_query:
results = results[
results["signature"]
.str.lower()
.str.contains(signature_query.lower(), na=False)
]
if region:
results = results[results["region"].str.lower() == region.lower()]
# Filter for profiles with email
if has_email:
results = results[results["email"].notna() & (results["email"] != "")]
return results.head(1000) # Limit to 1000 results to prevent UI overload
def create_interface(df):
"""Create the Gradio interface"""
# Get min and max follower counts for slider
min_followers_global = max(1000, int(df["follower_count"].min()))
max_followers_global = min(10000000, int(df["follower_count"].max()))
# Get min and max video counts for slider
min_videos_global = max(1, int(df["video_count"].min()))
max_videos_global = min(10000, int(df["video_count"].max()))
# Get unique regions for dropdown
regions = sorted(df["region"].dropna().unique().tolist())
regions = [""] + regions # Add empty option
with gr.Blocks(title="TikTok Creator Analyzer") as interface:
gr.Markdown("# TikTok Creator Analyzer")
gr.Markdown(f"Database contains {len(df):,} creator profiles")
# Show top 100 profiles by default
top_profiles = df.sort_values(by="follower_count", ascending=False).head(100)
default_view = format_results(top_profiles)
with gr.Tab("Overview"):
gr.Markdown("## Top 100 Profiles by Follower Count")
overview_results = gr.Dataframe(value=default_view, label="Top Profiles")
refresh_btn = gr.Button("Refresh")
refresh_btn.click(
fn=lambda: format_results(
df.sort_values(by="follower_count", ascending=False).head(100)
),
inputs=[],
outputs=overview_results,
)
with gr.Tab("Advanced Search"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Follower Count")
min_followers_slider = gr.Slider(
minimum=min_followers_global,
maximum=max_followers_global,
value=min_followers_global,
step=1000,
label="Minimum Followers",
interactive=True,
)
max_followers_slider = gr.Slider(
minimum=min_followers_global,
maximum=max_followers_global,
value=max_followers_global,
step=1000,
label="Maximum Followers",
interactive=True,
)
gr.Markdown("### Video Count")
min_videos_slider = gr.Slider(
minimum=min_videos_global,
maximum=max_videos_global,
value=min_videos_global,
step=10,
label="Minimum Videos",
interactive=True,
)
max_videos_slider = gr.Slider(
minimum=min_videos_global,
maximum=max_videos_global,
value=max_videos_global,
step=10,
label="Maximum Videos",
interactive=True,
)
with gr.Column(scale=1):
signature_input = gr.Textbox(label="Keywords in Signature")
region_input = gr.Dropdown(label="Region", choices=regions)
has_email_checkbox = gr.Checkbox(label="Has Email", value=False)
search_btn = gr.Button("Search", variant="primary", size="lg")
results_count = gr.Markdown("### Results: 0 profiles found")
# Create a dataframe with download button
with gr.Row():
search_results = gr.Dataframe(label="Results")
download_btn = gr.Button("Download Results as CSV")
# Function to update results count
def update_results_count(results_df):
count = len(results_df)
return f"### Results: {count:,} profiles found"
# Function to perform search and update results
def perform_search(
min_followers,
max_followers,
min_videos,
max_videos,
signature,
region,
has_email,
):
results = combined_search(
df,
min_followers,
max_followers,
min_videos,
max_videos,
signature,
region,
has_email,
)
formatted_results = format_results(results)
count_text = update_results_count(results)
return formatted_results, count_text
# Function to download results as CSV
def download_results(results_df):
if results_df.empty:
return None
# Convert back to original format for download
download_df = df[df["unique_id"].isin(results_df["unique_id"])]
# Save to temporary CSV file
temp_csv = "temp_results.csv"
download_df.to_csv(temp_csv, index=False)
return temp_csv
# Connect the search button
search_btn.click(
fn=perform_search,
inputs=[
min_followers_slider,
max_followers_slider,
min_videos_slider,
max_videos_slider,
signature_input,
region_input,
has_email_checkbox,
],
outputs=[search_results, results_count],
)
# Connect the download button
download_btn.click(
fn=download_results,
inputs=[search_results],
outputs=[gr.File(label="Download")],
)
with gr.Tab("Statistics"):
gr.Markdown("## Database Statistics")
# Calculate some basic statistics
total_creators = len(df)
total_followers = df["follower_count"].sum()
avg_followers = df["follower_count"].mean()
median_followers = df["follower_count"].median()
max_followers = df["follower_count"].max()
stats_md = f"""
- Total Creators: {total_creators:,}
- Total Followers: {total_followers:,}
- Average Followers: {avg_followers:,.2f}
- Median Followers: {median_followers:,}
- Max Followers: {max_followers:,}
"""
gr.Markdown(stats_md)
with gr.Tab("Maintenance"):
gr.Markdown("## Database Maintenance")
# Get processed files info
processed_files = get_processed_files()
maintenance_md = f"""
- Total processed files: {len(processed_files)}
- Last update: {time.ctime(CACHE_FILE.stat().st_mtime) if CACHE_FILE.exists() else 'Never'}
"""
gr.Markdown(maintenance_md)
with gr.Row():
force_reload_btn = gr.Button("Force Reload All Files")
reload_status = gr.Markdown("Click to reload all files from scratch")
def reload_all_files():
return "Reloading all files... This may take a while. Please restart the application."
force_reload_btn.click(
fn=reload_all_files, inputs=[], outputs=reload_status
)
return interface
def main():
print("Loading TikTok creator data...")
df = load_data()
print(f"Loaded {len(df):,} creator profiles")
# Create and launch the interface
interface = create_interface(df)
interface.launch(share=True, server_name="0.0.0.0")
if __name__ == "__main__":
main()
|