# /// script # requires-python = ">=3.13" # dependencies = [ # "cvxpy==1.6.0", # "marimo", # "numpy==2.2.2", # ] # /// import marimo __generated_with = "0.11.0" app = marimo.App() @app.cell(hide_code=True) def _(mo): mo.md( r""" # Quadratic program A quadratic program is an optimization problem with a quadratic objective and affine equality and inequality constraints. A common standard form is the following: \[ \begin{array}{ll} \text{minimize} & (1/2)x^TPx + q^Tx\\ \text{subject to} & Gx \leq h \\ & Ax = b. \end{array} \] Here $P \in \mathcal{S}^{n}_+$, $q \in \mathcal{R}^n$, $G \in \mathcal{R}^{m \times n}$, $h \in \mathcal{R}^m$, $A \in \mathcal{R}^{p \times n}$, and $b \in \mathcal{R}^p$ are problem data and $x \in \mathcal{R}^{n}$ is the optimization variable. The inequality constraint $Gx \leq h$ is elementwise. **Why quadratic programming?** Quadratic programs are convex optimization problems that generalize both least-squares and linear programming.They can be solved efficiently and reliably, even in real-time. **An example from finance.** A simple example of a quadratic program arises in finance. Suppose we have $n$ different stocks, an estimate $r \in \mathcal{R}^n$ of the expected return on each stock, and an estimate $\Sigma \in \mathcal{S}^{n}_+$ of the covariance of the returns. Then we solve the optimization problem \[ \begin{array}{ll} \text{minimize} & (1/2)x^T\Sigma x - r^Tx\\ \text{subject to} & x \geq 0 \\ & \mathbf{1}^Tx = 1, \end{array} \] to find a nonnegative portfolio allocation $x \in \mathcal{R}^n_+$ that optimally balances expected return and variance of return. When we solve a quadratic program, in addition to a solution $x^\star$, we obtain a dual solution $\lambda^\star$ corresponding to the inequality constraints. A positive entry $\lambda^\star_i$ indicates that the constraint $g_i^Tx \leq h_i$ holds with equality for $x^\star$ and suggests that changing $h_i$ would change the optimal value. """ ) return @app.cell(hide_code=True) def _(mo): mo.md( r""" ## Example In this example, we use CVXPY to construct and solve a quadratic program. """ ) return @app.cell def _(): import cvxpy as cp import numpy as np return cp, np @app.cell(hide_code=True) def _(mo): mo.md("""First we generate synthetic data.""") return @app.cell def _(np): m = 15 n = 10 p = 5 np.random.seed(1) P = np.random.randn(n, n) P = P.T @ P q = np.random.randn(n) G = np.random.randn(m, n) h = G @ np.random.randn(n) A = np.random.randn(p, n) b = np.random.randn(p) return A, G, P, b, h, m, n, p, q @app.cell(hide_code=True) def _(mo): mo.md(r"""Next, we specify the problem. Notice that we use the `quad_form` function from CVXPY to create the quadratic form $x^TPx$.""") return @app.cell def _(A, G, P, b, cp, h, n, q): x = cp.Variable(n) problem = cp.Problem( cp.Minimize((1 / 2) * cp.quad_form(x, P) + q.T @ x), [G @ x <= h, A @ x == b], ) _ = problem.solve() return problem, x @app.cell(hide_code=True) def _(mo, problem, x): mo.md( f""" The optimal value is {problem.value:.04f}. A solution $x$ is {mo.as_html(list(x.value))} A dual solution is is {mo.as_html(list(problem.constraints[0].dual_value))} """ ) return @app.cell def _(): import marimo as mo return (mo,) if __name__ == "__main__": app.run()