|
import numpy as np |
|
import torch |
|
import cv2 as cv |
|
import random |
|
import os |
|
import spaces |
|
import gradio as gr |
|
|
|
from rembg import remove |
|
from PIL import Image |
|
from transformers import pipeline |
|
from controlnet_aux import MLSDdetector, HEDdetector, NormalBaeDetector, LineartDetector |
|
from peft import PeftModel, LoraConfig |
|
from diffusers import ( |
|
DiffusionPipeline, |
|
StableDiffusionPipeline, |
|
StableDiffusionControlNetPipeline, |
|
StableDiffusionControlNetImg2ImgPipeline, |
|
DPMSolverMultistepScheduler, |
|
PNDMScheduler, |
|
ControlNetModel |
|
) |
|
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback |
|
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import rescale_noise_cfg, retrieve_timesteps |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.utils import load_image, make_image_grid |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
if torch.cuda.is_available(): |
|
torch_dtype = torch.float16 |
|
else: |
|
torch_dtype = torch.float32 |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
default_model = 'CompVis/stable-diffusion-v1-4' |
|
LoRA_path = 'new_model' |
|
|
|
CONTROLNET_MODE = { |
|
"Canny Edge Detection" : "lllyasviel/control_v11p_sd15_canny", |
|
"Pixel to Pixel": "lllyasviel/control_v11e_sd15_ip2p", |
|
"HED edge detection (soft edge)" : "lllyasviel/control_v11p_sd15_softedge", |
|
"Midas depth estimation" : "lllyasviel/control_v11f1p_sd15_depth", |
|
"Surface Normal Estimation" : "lllyasviel/control_v11p_sd15_normalbae", |
|
"Scribble-Based Generation" : "lllyasviel/control_v11p_sd15_scribble", |
|
"Line Art Generation": "lllyasviel/control_v11p_sd15_lineart", |
|
} |
|
|
|
def get_pipe( |
|
model_id, |
|
use_controlnet, |
|
controlnet_mode, |
|
use_ip_adapter |
|
): |
|
|
|
if use_controlnet and use_ip_adapter: |
|
|
|
print('Pipe with ControlNet and IPAdapter') |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
CONTROLNET_MODE[controlnet_mode], |
|
cache_dir="./models_cache" |
|
) |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
model_id if model_id!='Maria_Lashina_LoRA' else default_model, |
|
torch_dtype=torch_dtype, |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
).to(device) |
|
|
|
pipe.load_ip_adapter( |
|
"h94/IP-Adapter", |
|
subfolder="models", |
|
weight_name="ip-adapter-plus_sd15.bin", |
|
) |
|
|
|
elif use_controlnet and not use_ip_adapter: |
|
|
|
print('Pipe with ControlNet') |
|
|
|
controlnet = ControlNetModel.from_pretrained( |
|
CONTROLNET_MODE[controlnet_mode], |
|
cache_dir="./models_cache" |
|
) |
|
|
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
model_id if model_id!='Maria_Lashina_LoRA' else default_model, |
|
torch_dtype=torch_dtype, |
|
controlnet=controlnet, |
|
safety_checker=None, |
|
).to(device) |
|
|
|
elif use_ip_adapter and not use_controlnet: |
|
|
|
print('Pipe with IpAdapter') |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id if model_id!='Maria_Lashina_LoRA' else default_model, |
|
torch_dtype=torch_dtype, |
|
safety_checker=None, |
|
).to(device) |
|
|
|
pipe.load_ip_adapter( |
|
"h94/IP-Adapter", |
|
subfolder="models", |
|
weight_name="ip-adapter-plus_sd15.bin") |
|
|
|
elif not use_controlnet and not use_ip_adapter: |
|
|
|
print('Pipe with only SD') |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained( |
|
model_id if model_id!='Maria_Lashina_LoRA' else default_model, |
|
torch_dtype=torch_dtype, |
|
safety_checker=None, |
|
).to(device) |
|
|
|
|
|
if model_id == 'Maria_Lashina_LoRA': |
|
adapter_name = 'cartoonish mouse' |
|
unet_sub_dir = os.path.join(LoRA_path, "unet") |
|
text_encoder_sub_dir = os.path.join(LoRA_path, "text_encoder") |
|
|
|
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name) |
|
|
|
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name) |
|
|
|
return pipe |
|
|
|
def prepare_controlnet_image(controlnet_image, mode): |
|
if mode == "Canny Edge Detection": |
|
image = cv.Canny(controlnet_image, 80, 160) |
|
image = np.repeat(image[:, :, None], 3, axis=2) |
|
image = Image.fromarray(image) |
|
|
|
elif mode == "Pixel to Pixel": |
|
image = Image.fromarray(controlnet_image).convert('RGB') |
|
|
|
elif mode == "HED edge detection (soft edge)": |
|
processor = HEDdetector.from_pretrained('lllyasviel/Annotators') |
|
image = processor(controlnet_image) |
|
|
|
elif mode == "Midas depth estimation": |
|
depth_estimator = pipeline('depth-estimation') |
|
image = depth_estimator(Image.fromarray(controlnet_image))['depth'] |
|
image = np.array(image) |
|
image = image[:, :, None] |
|
image = np.concatenate([image, image, image], axis=2) |
|
image = Image.fromarray(image) |
|
|
|
elif mode == "Surface Normal Estimation": |
|
processor = NormalBaeDetector.from_pretrained("lllyasviel/Annotators") |
|
image = processor(controlnet_image) |
|
|
|
elif mode == "Scribble-Based Generation": |
|
processor = HEDdetector.from_pretrained('lllyasviel/Annotators') |
|
image = processor(controlnet_image, scribble=True) |
|
|
|
elif mode == "Line Art Generation": |
|
processor = LineartDetector.from_pretrained("lllyasviel/Annotators") |
|
image = processor(controlnet_image) |
|
|
|
else: |
|
image = controlnet_image |
|
|
|
return image |
|
|
|
|
|
def infer( |
|
model_id, |
|
prompt, |
|
negative_prompt, |
|
seed, |
|
randomize_seed, |
|
width, |
|
height, |
|
guidance_scale, |
|
lora_scale, |
|
num_inference_steps, |
|
use_controlnet, |
|
control_strength, |
|
controlnet_mode, |
|
controlnet_image, |
|
use_ip_adapter, |
|
ip_adapter_scale, |
|
ip_adapter_image, |
|
delete_background, |
|
progress=gr.Progress(track_tqdm=True), |
|
): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
if not use_controlnet and not use_ip_adapter: |
|
|
|
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter) |
|
|
|
image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
elif use_controlnet and not use_ip_adapter: |
|
|
|
cn_image = prepare_controlnet_image(controlnet_image, controlnet_mode) |
|
|
|
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter) |
|
|
|
image = pipe( |
|
prompt, |
|
cn_image, |
|
controlnet_conditioning_scale=control_strength, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
elif not use_controlnet and use_ip_adapter: |
|
|
|
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter) |
|
|
|
pipe.set_ip_adapter_scale(ip_adapter_scale) |
|
|
|
image = pipe( |
|
prompt, |
|
ip_adapter_image=ip_adapter_image, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
elif use_controlnet and use_ip_adapter: |
|
|
|
cn_image = prepare_controlnet_image(controlnet_image, controlnet_mode) |
|
|
|
pipe = get_pipe(model_id, use_controlnet, controlnet_mode, use_ip_adapter) |
|
|
|
pipe.set_ip_adapter_scale(ip_adapter_scale) |
|
|
|
image = pipe( |
|
prompt, |
|
cn_image, |
|
controlnet_conditioning_scale=control_strength, |
|
ip_adapter_image=ip_adapter_image, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
cross_attention_kwargs={"scale": lora_scale}, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
if delete_background: |
|
image = remove(image) |
|
|
|
return image, seed |