File size: 1,799 Bytes
d8f2217
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a076cab
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from transformers import ASTFeatureExtractor, ASTForAudioClassification
import torch
import librosa
import numpy as np
import pandas as pd

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

model = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593").to(device)
feature_extractor = ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")

def detect_siren(audio_path):
    audio, sr = librosa.load(audio_path, sr=16000)
    if len(audio.shape) == 1:
        audio = np.expand_dims(audio, axis=0)
    inputs = feature_extractor(audio, sampling_rate=16000, return_tensors="pt")
    inputs = {k: v.to(device) for k, v in inputs.items()}
    with torch.no_grad():
        outputs = model(**inputs)
        logits = outputs.logits
        predicted_class_idx = logits.argmax(-1).item()
    return model.config.id2label[predicted_class_idx]

# Example: Analyze multiple files
audio_files = ["/kaggle/input/emergency-vehicle-siren-sounds/sounds/ambulance/sound_1.wav", "/kaggle/input/emergency-vehicle-siren-sounds/sounds/ambulance/sound_10.wav", "/kaggle/input/emergency-vehicle-siren-sounds/sounds/ambulance/sound_100.wav"]
results = []

for file in audio_files:
    label = detect_siren(file)
    results.append({"file": file, "label": label})

# Save results
df = pd.DataFrame(results)
df.to_csv("detection_results.csv", index=False)

# app.py
import streamlit as st

st.title("🚨 Emergency Vehicle Siren Detection")

df = pd.read_csv("detection_results.csv")

st.dataframe(df)

for index, row in df.iterrows():
    if "siren" in row['label'].lower():
        st.error(f"🚨 {row['file']} => Siren Detected!")
    else:
        st.success(f"βœ… {row['file']} => No Siren.")