Spaces:
Sleeping
Sleeping
Commit
·
de8b4eb
1
Parent(s):
a36b86c
Subiendo app
Browse files- app.py +64 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import the necessary libraries
|
2 |
+
import gradio as gr # Gradio is a library to quickly build and share demos for ML models
|
3 |
+
import joblib # joblib is used here to load the trained model from a file
|
4 |
+
import numpy as np # NumPy for numerical operations (if needed for array manipulation)
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
|
7 |
+
HF_TOKEN = 'hf_your_token_here' # Replace with your actual Hugging Face token
|
8 |
+
|
9 |
+
# Replace with your actual Hugging Face model repo ID and file names
|
10 |
+
# For example, repo_id="username/iris-decision-tree"
|
11 |
+
# Use repo_type="model" if it's a model repository
|
12 |
+
model_path = hf_hub_download(
|
13 |
+
repo_id="brjapon/iris-dt",
|
14 |
+
filename="iris_dt.joblib", # The model file stored in the HF repo
|
15 |
+
repo_type="model" # Could also be 'dataset' if you're storing it that way
|
16 |
+
)
|
17 |
+
|
18 |
+
# Load the trained model
|
19 |
+
pipeline = joblib.load(model_path)
|
20 |
+
|
21 |
+
# Define a function that takes the four iris measurements as input
|
22 |
+
# and returns the predicted iris species label.
|
23 |
+
def predict_iris(sepal_length, sepal_width, petal_length, petal_width):
|
24 |
+
# Convert the input parameters into a 2D list/array because
|
25 |
+
# scikit-learn's predict() expects a 2D array of shape (n_samples, n_features)
|
26 |
+
input = np.array([[sepal_length, sepal_width, petal_length, petal_width]])
|
27 |
+
prediction = pipeline.predict(input)
|
28 |
+
|
29 |
+
# Convert the prediction to the string label
|
30 |
+
if prediction == 0:
|
31 |
+
return 'iris-setosa'
|
32 |
+
elif prediction == 1:
|
33 |
+
return 'Iris-versicolor'
|
34 |
+
elif prediction == 2:
|
35 |
+
return 'Iris-virginica'
|
36 |
+
else:
|
37 |
+
return "Invalid prediction"
|
38 |
+
|
39 |
+
# Create a Gradio Interface:
|
40 |
+
# - fn: the function to call for inference
|
41 |
+
# - inputs: a list of component types to collect user input (in this case, four numeric values)
|
42 |
+
# - outputs: how the prediction is displayed (in this case, as text)
|
43 |
+
# - live: whether to update the output in real-time as the user types
|
44 |
+
interface = gr.Interface(
|
45 |
+
fn=predict_iris,
|
46 |
+
inputs=["number", "number", "number", "number"],
|
47 |
+
outputs="text",
|
48 |
+
live=True,
|
49 |
+
title="Iris Species Identifier",
|
50 |
+
description="Enter the four measurements to predict the Iris species."
|
51 |
+
)
|
52 |
+
|
53 |
+
# Run the interface when this script is executed directly.
|
54 |
+
# This will launch a local Gradio server and open a user interface in the browser.
|
55 |
+
if __name__ == "__main__":
|
56 |
+
# To create a public link, set the parameter share=True
|
57 |
+
interface.launch()
|
58 |
+
|
59 |
+
'''
|
60 |
+
# The Flag button allows users (or testers) to mark or “flag”
|
61 |
+
# a particular input-output interaction for later review.
|
62 |
+
# When someone clicks Flag, Gradio saves the input values (and often the output) to a log.csv file
|
63 |
+
# letting you keep track of interesting or potentially problematic cases for debugging or analysis later on
|
64 |
+
'''
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn
|
2 |
+
huggingface_hub
|
3 |
+
datasets
|
4 |
+
gradio
|
5 |
+
joblib
|