Spaces:
Sleeping
Sleeping
Commit
·
d179ac1
1
Parent(s):
3d9ca9a
Update PDF to Markdown converter API with NVIDIA L4 support
Browse files- app.py +6 -167
- app/main.py +8 -1
app.py
CHANGED
@@ -1,171 +1,10 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
import tempfile
|
5 |
-
import os
|
6 |
-
import json
|
7 |
-
import traceback
|
8 |
-
from datetime import datetime
|
9 |
-
from typing import Dict, List, Any, Optional
|
10 |
-
|
11 |
-
# Import necessary components from magic_pdf based on convert_pdf.py
|
12 |
-
from magic_pdf.data.data_reader_writer import FileBasedDataWriter, FileBasedDataReader
|
13 |
-
from magic_pdf.data.dataset import PymuDocDataset
|
14 |
-
from magic_pdf.model.doc_analyze_by_custom_model import doc_analyze
|
15 |
-
from magic_pdf.config.enums import SupportedPdfParseMethod
|
16 |
-
|
17 |
-
# Application metadata
|
18 |
-
app_description = """
|
19 |
-
# MinerU PDF Processor API
|
20 |
-
|
21 |
-
This API provides PDF processing capabilities using MinerU's magic-pdf library.
|
22 |
-
It extracts text content and generates markdown from PDF documents.
|
23 |
-
|
24 |
-
## Features:
|
25 |
-
- PDF text extraction
|
26 |
-
- Markdown conversion
|
27 |
-
- Layout analysis (via output files)
|
28 |
"""
|
29 |
|
30 |
-
app
|
31 |
-
title="MinerU PDF API",
|
32 |
-
description=app_description,
|
33 |
-
version="1.0.0",
|
34 |
-
contact={
|
35 |
-
"name": "PDF Converter Service",
|
36 |
-
},
|
37 |
-
)
|
38 |
-
|
39 |
-
# Add CORS middleware to allow cross-origin requests
|
40 |
-
app.add_middleware(
|
41 |
-
CORSMiddleware,
|
42 |
-
allow_origins=["*"], # Allow all origins
|
43 |
-
allow_credentials=True,
|
44 |
-
allow_methods=["*"], # Allow all methods
|
45 |
-
allow_headers=["*"], # Allow all headers
|
46 |
-
)
|
47 |
-
|
48 |
-
# Define output directories (relative to the app's working directory in the container)
|
49 |
-
local_image_dir, local_md_dir = "output/images", "output"
|
50 |
-
os.makedirs(local_image_dir, exist_ok=True)
|
51 |
-
os.makedirs(local_md_dir, exist_ok=True)
|
52 |
-
|
53 |
-
# Health check endpoint
|
54 |
-
@app.get("/health", tags=["Health"])
|
55 |
-
async def health_check() -> Dict[str, Any]:
|
56 |
-
"""
|
57 |
-
Health check endpoint to verify the service is running.
|
58 |
-
Returns the service status and current time.
|
59 |
-
"""
|
60 |
-
return {
|
61 |
-
"status": "healthy",
|
62 |
-
"timestamp": datetime.now().isoformat(),
|
63 |
-
"service": "mineru-pdf-processor"
|
64 |
-
}
|
65 |
-
|
66 |
-
@app.post("/extract", tags=["PDF Processing"])
|
67 |
-
async def extract(file: UploadFile = File(...)) -> Dict[str, Any]:
|
68 |
-
"""
|
69 |
-
Process a PDF file using PymuDocDataset and return the extracted markdown content.
|
70 |
-
|
71 |
-
Parameters:
|
72 |
-
file: The PDF file to process
|
73 |
-
|
74 |
-
Returns:
|
75 |
-
A JSON object containing the extracted markdown and status.
|
76 |
-
"""
|
77 |
-
if not file.filename or not file.filename.lower().endswith('.pdf'):
|
78 |
-
raise HTTPException(status_code=400, detail="Invalid file. Please upload a PDF file.")
|
79 |
-
|
80 |
-
content = await file.read()
|
81 |
-
temp_pdf_path = None
|
82 |
-
|
83 |
-
try:
|
84 |
-
# Save the uploaded PDF to a temporary file
|
85 |
-
with tempfile.NamedTemporaryFile(suffix=".pdf", delete=False) as temp_pdf:
|
86 |
-
temp_pdf.write(content)
|
87 |
-
temp_pdf_path = temp_pdf.name
|
88 |
-
|
89 |
-
# Clear previous output files (optional, depending on desired behavior)
|
90 |
-
# You might want to handle output naming differently in a multi-user API context
|
91 |
-
# For simplicity, we'll clear the output dir here like in convert_pdf.py
|
92 |
-
for item in os.listdir(local_image_dir):
|
93 |
-
os.remove(os.path.join(local_image_dir, item))
|
94 |
-
for item in os.listdir(local_md_dir):
|
95 |
-
if os.path.isfile(os.path.join(local_md_dir, item)):
|
96 |
-
os.remove(os.path.join(local_md_dir, item))
|
97 |
-
|
98 |
-
# Get filename and prepare output paths for magic-pdf
|
99 |
-
pdf_file_name = os.path.basename(temp_pdf_path)
|
100 |
-
name_without_suff = os.path.splitext(pdf_file_name)[0]
|
101 |
-
image_dir_rel_path = str(os.path.basename(local_image_dir)) # Relative path for markdown image links
|
102 |
-
|
103 |
-
# Setup writers
|
104 |
-
image_writer = FileBasedDataWriter(local_image_dir)
|
105 |
-
md_writer = FileBasedDataWriter(local_md_dir)
|
106 |
-
|
107 |
-
# Use PymuDocDataset for processing
|
108 |
-
ds = PymuDocDataset(content) # Pass pdf bytes directly
|
109 |
-
|
110 |
-
# Inference and pipeline based on PDF type
|
111 |
-
if ds.classify() == SupportedPdfParseMethod.OCR:
|
112 |
-
infer_result = ds.apply(doc_analyze, ocr=True)
|
113 |
-
pipe_result = infer_result.pipe_ocr_mode(image_writer)
|
114 |
-
else:
|
115 |
-
infer_result = ds.apply(doc_analyze, ocr=False)
|
116 |
-
pipe_result = infer_result.pipe_txt_mode(image_writer)
|
117 |
-
|
118 |
-
# Optional: Generate intermediate output files (comment out if not needed for API)
|
119 |
-
infer_result.draw_model(os.path.join(local_md_dir, f"{name_without_suff}_model.pdf"))
|
120 |
-
pipe_result.draw_layout(os.path.join(local_md_dir, f"{name_without_suff}_layout.pdf"))
|
121 |
-
pipe_result.draw_span(os.path.join(local_md_dir, f"{name_without_suff}_spans.pdf"))
|
122 |
-
pipe_result.dump_content_list(md_writer, f"{name_without_suff}_content_list.json", image_dir_rel_path)
|
123 |
-
pipe_result.dump_middle_json(md_writer, f'{name_without_suff}_middle.json')
|
124 |
-
|
125 |
-
# Get markdown content
|
126 |
-
md_content = pipe_result.get_markdown(image_dir_rel_path)
|
127 |
-
|
128 |
-
# Dump markdown to file (optional for API, but useful for debugging/access)
|
129 |
-
md_file_path = f"{name_without_suff}.md"
|
130 |
-
pipe_result.dump_md(md_writer, md_file_path, image_dir_rel_path)
|
131 |
-
print(f"Markdown saved to: {os.path.join(local_md_dir, md_file_path)}")
|
132 |
-
|
133 |
-
|
134 |
-
# Return the markdown content in the response
|
135 |
-
return {
|
136 |
-
"filename": file.filename,
|
137 |
-
"status": "success",
|
138 |
-
"markdown_content": md_content
|
139 |
-
# You could potentially add links to the generated files here if needed
|
140 |
-
# "output_files": { ... }
|
141 |
-
}
|
142 |
-
|
143 |
-
except Exception as e:
|
144 |
-
error_detail = str(e)
|
145 |
-
error_trace = traceback.format_exc()
|
146 |
-
|
147 |
-
# Log the error
|
148 |
-
print(f"Error processing PDF: {error_detail}")
|
149 |
-
print(error_trace)
|
150 |
-
|
151 |
-
return JSONResponse(
|
152 |
-
status_code=500,
|
153 |
-
content={
|
154 |
-
"error": "Error processing PDF",
|
155 |
-
"detail": error_detail,
|
156 |
-
"filename": file.filename if file and hasattr(file, 'filename') else None
|
157 |
-
}
|
158 |
-
)
|
159 |
-
|
160 |
-
finally:
|
161 |
-
# Clean up the temporary file
|
162 |
-
if temp_pdf_path and os.path.exists(temp_pdf_path):
|
163 |
-
try:
|
164 |
-
os.unlink(temp_pdf_path)
|
165 |
-
except Exception:
|
166 |
-
pass
|
167 |
|
168 |
if __name__ == "__main__":
|
169 |
-
|
170 |
-
|
171 |
-
uvicorn.run("app:app", host="0.0.0.0", port=7860, reload=False)
|
|
|
1 |
+
"""
|
2 |
+
Simple entry point for Hugging Face Spaces.
|
3 |
+
This file redirects to the FastAPI app in the app directory.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
+
from app.main import app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
if __name__ == "__main__":
|
9 |
+
import uvicorn
|
10 |
+
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
app/main.py
CHANGED
@@ -57,11 +57,18 @@ async def health_check() -> Dict[str, Any]:
|
|
57 |
Health check endpoint to verify the service is running.
|
58 |
Returns the service status and current time.
|
59 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
return {
|
61 |
"status": "healthy",
|
62 |
"timestamp": datetime.now().isoformat(),
|
63 |
"service": "pdf-to-markdown-converter",
|
64 |
-
"gpu":
|
65 |
}
|
66 |
|
67 |
@app.post("/convert", tags=["PDF Processing"])
|
|
|
57 |
Health check endpoint to verify the service is running.
|
58 |
Returns the service status and current time.
|
59 |
"""
|
60 |
+
gpu_info = {
|
61 |
+
"cuda_available": torch.cuda.is_available(),
|
62 |
+
"device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
|
63 |
+
"device_name": torch.cuda.get_device_name(0) if torch.cuda.is_available() else "N/A",
|
64 |
+
"current_device": torch.cuda.current_device() if torch.cuda.is_available() else -1
|
65 |
+
}
|
66 |
+
|
67 |
return {
|
68 |
"status": "healthy",
|
69 |
"timestamp": datetime.now().isoformat(),
|
70 |
"service": "pdf-to-markdown-converter",
|
71 |
+
"gpu": gpu_info
|
72 |
}
|
73 |
|
74 |
@app.post("/convert", tags=["PDF Processing"])
|