Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from llm_engine import HuggingFaceEndpoint, ChatHuggingFace
|
4 |
+
from huggingface_hub import login
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from docx import Document
|
7 |
+
import csv
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
|
11 |
+
huggingface_token = os.getenv('HUGGINGFACE_TOKEN')
|
12 |
+
|
13 |
+
# Realizar el inicio de sesi贸n de Hugging Face solo si el token est谩 disponible
|
14 |
+
if huggingface_token:
|
15 |
+
login(token=huggingface_token)
|
16 |
+
|
17 |
+
# Configuraci贸n del modelo
|
18 |
+
@st.cache_resource
|
19 |
+
def load_llm():
|
20 |
+
llm = HuggingFaceEndpoint(
|
21 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.3",
|
22 |
+
task="text-generation"
|
23 |
+
)
|
24 |
+
llm_engine_hf = ChatHuggingFace(llm=llm)
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
|
26 |
+
return llm_engine_hf, tokenizer
|
27 |
+
|
28 |
+
llm_engine_hf, tokenizer = load_llm()
|
29 |
+
|
30 |
+
st.title("LexAIcon")
|
31 |
+
st.write("Puedes conversar con este chatbot basado en Mistral7B-Instruct y subir archivos para que el chatbot los procese.")
|
32 |
+
|
33 |
+
if "generated" not in st.session_state:
|
34 |
+
st.session_state["generated"] = []
|
35 |
+
if "past" not in st.session_state:
|
36 |
+
st.session_state["past"] = []
|
37 |
+
|
38 |
+
def generate_response(prompt):
|
39 |
+
response = llm_engine_hf.invoke(prompt)
|
40 |
+
return response
|
41 |
+
|
42 |
+
def handle_uploaded_file(uploaded_file):
|
43 |
+
try:
|
44 |
+
if uploaded_file.name.endswith(".txt"):
|
45 |
+
text = uploaded_file.read().decode("utf-8")
|
46 |
+
elif uploaded_file.name.endswith(".pdf"):
|
47 |
+
reader = PdfReader(uploaded_file)
|
48 |
+
text = ""
|
49 |
+
for page in range(len(reader.pages)):
|
50 |
+
text += reader.pages[page].extract_text()
|
51 |
+
elif uploaded_file.name.endswith(".docx"):
|
52 |
+
doc = Document(uploaded_file)
|
53 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
54 |
+
elif uploaded_file.name.endswith(".csv"):
|
55 |
+
text = ""
|
56 |
+
content = uploaded_file.read().decode("utf-8").splitlines()
|
57 |
+
reader = csv.reader(content)
|
58 |
+
text = " ".join([" ".join(row) for row in reader])
|
59 |
+
elif uploaded_file.name.endswith(".json"):
|
60 |
+
data = json.load(uploaded_file)
|
61 |
+
text = json.dumps(data, indent=4)
|
62 |
+
else:
|
63 |
+
text = "Tipo de archivo no soportado."
|
64 |
+
return text
|
65 |
+
except Exception as e:
|
66 |
+
return str(e)
|
67 |
+
|
68 |
+
# Entrada del usuario
|
69 |
+
user_input = st.text_input("T煤: ", "")
|
70 |
+
|
71 |
+
# Manejo de archivos subidos
|
72 |
+
uploaded_files = st.file_uploader("Sube un archivo", type=["txt", "pdf", "docx", "csv", "json"], accept_multiple_files=True)
|
73 |
+
|
74 |
+
if st.button("Enviar"):
|
75 |
+
if user_input:
|
76 |
+
response = generate_response(user_input)
|
77 |
+
st.session_state.generated.append({"user": user_input, "bot": response})
|
78 |
+
|
79 |
+
if st.session_state["generated"]:
|
80 |
+
for chat in st.session_state["generated"]:
|
81 |
+
st.write(f"T煤: {chat['user']}")
|
82 |
+
st.write(f"Chatbot: {chat['bot']}")
|
83 |
+
|
84 |
+
if uploaded_files:
|
85 |
+
for uploaded_file in uploaded_files:
|
86 |
+
st.write(f"Archivo subido: {uploaded_file.name}")
|
87 |
+
file_content = handle_uploaded_file(uploaded_file)
|
88 |
+
st.write(file_content)
|